#### Universidade Federal de Minas Gerais Departamento de Ciência da Computação

# "Autonomic Networking"

Fabrício Aguiar Silva Thais Regina de Moura Braga

{fasilva,thaisrb}@dcc.ufmg.br

### Sumário

- Definição, Motivações, Objetivos, Inspiração
- Elementos Chave
- Como Funciona Atualmente
- Níveis de Evolução
- Requisitos de Implementação
- Elemento Autonômico (EA)
- Utilizando Políticas

## Sumário

- Desafios
- ◆ Frequently Asked Questions (F.A.Q.)
- Iniciativas Empresariais
- E as Redes de Sensores Sem Fio?
- Conclusões

# Definição

- ◆ Autonomic Computing (Computação Autonômica):
  - Abordagem para o auto-gerenciamento de sistemas computacionais que utiliza um mínimo de interferência humana
  - Qualquer tipo de Hardware (ex.: disco, CPU) ou Software (ex.: banco de dados, SOs)
  - Focar na automação das partes de um sistema não será suficiente
    - E a comunicação entre as máquinas?

# Definição

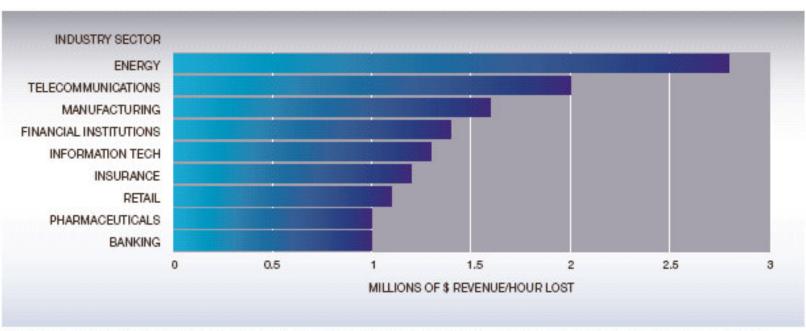
#### Autonomic Networking

- É uma instância da Computação Autonômica
- Elementos de rede e as próprias redes são vistas como sistemas computacionais autonômicos

## Motivações

Estruturas de TI grandes e heterogêneas Existência de poucos profissionais experientes e capacitados

Complexidade <


Elevados custos de manutenção Dificuldades para se gerenciar os sistemas complexos atuais

## Motivações

- Aumentar ROI (Return On Investiment)
- Aumentar QoS (Quality of Service)
- Acelerar tempo de implementação de novas capacidades
- Diminuir tempo de instalação, ciclos de teste e erros

# Motivações

Figure 1 Downtime: Average hourly impact



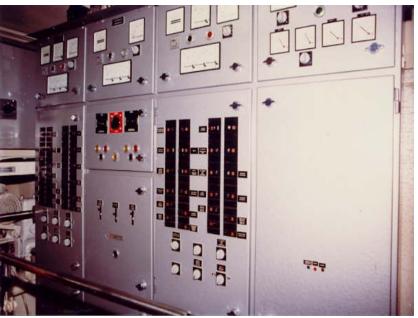
Data from IT Performance Engineering and Measurement Strategies: Quantifying Performance Loss, Meta Group, Stamford, CT (October 2000).

- Aumentar produtividade e diminuir complexidade para usuários
- Construir sistemas online 24/7
- Ajuste e preparação de recursos
  - tratamento eficiente das cargas de trabalho
- Antecipar necessidades
- Foco no negócio e não na infra-estrutura computacional

Nós éramos (somos) assim....



By courtesy of]


A I.ONG-DISTANCE TELEPHONE EXCHANGE.

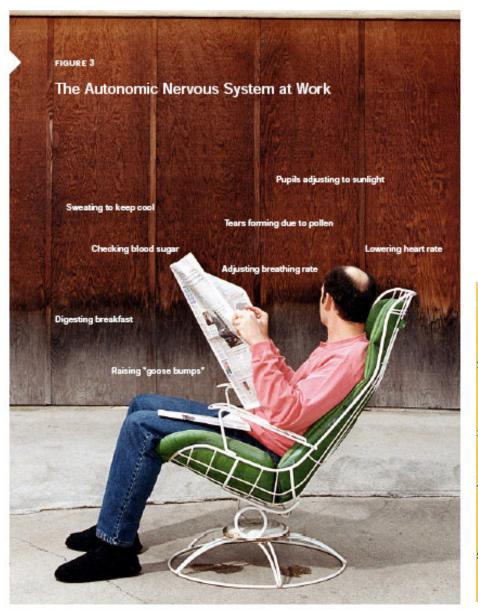
Radio-telephone switchboard circa 1930. From the left the first four stations are to London, the next Ship to Shore, Buenos Aires, and Rio de Janeiro.



...e agora somos (seremos) assim!

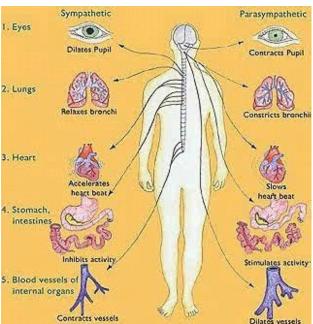





- Atualmente, existem centenas de milhares de vagas para profissionais de TI não preenchidas, somente nos EUA
- A demanda por profissionais de TI experientes deve crescer acima de 100% nos próximos 6 anos

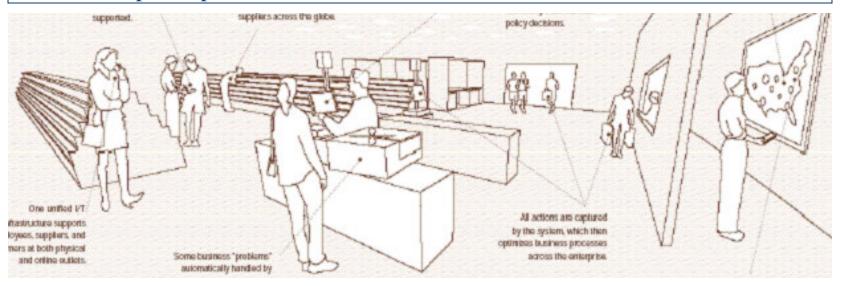
Paul Horn – IBM Senior Vice-president

Mas nós vamos perder nossos empregos?


## Inspiração

- Sistema nervoso autonômico
  - Cuida das funções vitais do corpo, mesmo diante de várias e diferentes condições externas
  - Mantém constante o estado interno
  - Prepara o corpo para as tarefas do momento
  - Faz todas as tarefas sem nenhum reconhecimento ou esforço consciente das pessoas




"Don't think about it – no need to. I've got it all covered!"

Autonomous nervous system



## Exemplo de utilização I

Uma **grande loja de varejo** com centenas de corredores, uma rede de estoques, frota de entrega, serviços de empregados, serviço de *call center* para clientes, interfaces Web e muito mais – um sistema de computação autonômica gerencia todos estes sistemas de TI distintos (e quase independentes) como se fossem um só e provê funcionalidades *time-sensitive* integradas, assim como acesso "sempre disponível" através de interfaces Web.



◆ 1 – Para ser autonômico, um sistema computacional deve "se conhecer" – e ser composto por componentes que também possuam um identidade de sistema.

Palavra-chave: self-knowledge

◆ 2 – Um sistema computacional autonômico deve se configurar e reconfigurar em condições variáveis e imprevisíveis.

Palavra-chave: self-configuration

◆ 3 – Um sistema autonômico sempre procura maneiras de otimizar seus trabalhos.

Palavra-chave: self-optimization

◆ 4 – Um sistema computacional autonômico deve executar algo similar à cura – ele deve estar apto para recuperar-se de rotinas e eventos extraordinários que podem causar mal funcionamento em algumas de suas partes.

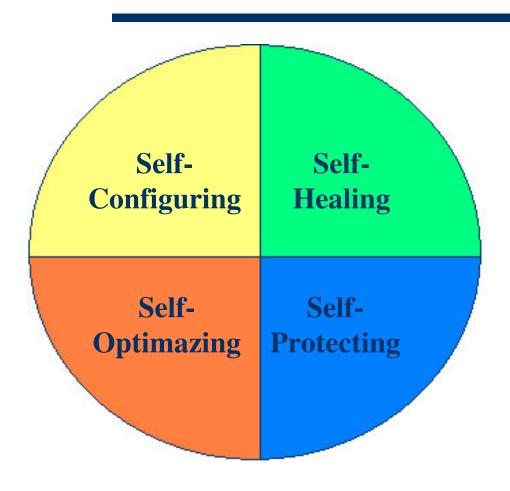
Palavra-chave: self-healing

◆ 5 – Um mundo virtual não é menos perigoso do que um mundo físico, portanto um sistema computacional autonômico deve ser um especialista em auto-proteção.

Palavra-chave: self-protection

◆ 6 – Um sistema computacional autonômico conhece seu ambiente e o contexto que cerca suas atividades, agindo de acordo com ele.

Palavras-chave: self-awareness, self-adapting


◆ 7 – Um sistema computacional autonômico não pode existir em um ambiente hermético.

Palavra-chave: open standards

◆ 8 – Um sistema computacional autonômico antecipará os recursos de otimização necessários, enquanto mantém sua complexidade escondida.

Palavras-chave: anticipation, support

# Componentes de sistemas auto-gerenciados



"An Evolution, not a Revolution"

- Nível 1 Básico
  - Cada elemento é gerenciado independentemente
- Nível 2 Gerenciado
  - Utilização de tecnologias de gerenciamento de sistemas para coleta de informações

"An Evolution, not a Revolution"

#### Nível 3 – Preditivo

- Uso de tecnologias de correlação
- Reconhecimento de padrões
- Prevê a configuração ótima e indica ações a serem tomadas pelo administrador

"An Evolution, not a Revolution"

#### Nível 4 – Adaptativo

- Sistemas automaticamente tomam as ações corretas
- SLAs guiam as ações dos sistemas

#### Nível 5 – Autonômico

- Operação do sistema é governada por políticas e objetivos de negócio
- Usuário monitora o processo ou altera objetivos

Figure 2 Evolving to autonomic operations

| BASIC<br>LEVEL 1                                                                                          | MANAGED<br>LEVEL 2                                                                              | PREDICTIVE<br>LEVEL 3                                                                                          | ADAPTIVE<br>LEVEL 4                                                                                     | AUTONOMIC<br>LEVEL 5                                                                                             |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| MULTIPLE SOURCES     OF SYSTEM     GENERATED DATA     REQUIRES EXTENSIVE,     HIGHLY SKILLED     IT STAFF | CONSOLIDATION OF<br>DATA THROUGH<br>MANAGEMENT TOOLS     IT STAFF ANALYZES<br>AND TAKES ACTIONS | SYSTEM MONITORS,<br>CORRELATES,<br>AND RECOMMENDS<br>ACTIONS     IT STAFF APPROVES<br>AND INITIATES<br>ACTIONS | SYSTEM MONITORS,<br>CORRELATES,<br>AND TAKES ACTION     IT STAFF MANAGES<br>PERFORMANCE<br>AGAINST SLAS | INTEGRATED COMPONENTS DYNAMICALLY MANAGED BY BUSINESS RULES/POLICIES IT STAFF FOCUSES ON ENABLING BUSINESS NEEDS |
|                                                                                                           | GREATER SYSTEM<br>AWARENESS     IMPROVED<br>PRODUCTIVITY                                        | REDUCED     DEPENDENCY     ON DEEP SKILLS     FASTER AND BETTER     DECISION MAKING                            | IT AGILITY AND<br>RESILIENCY WITH<br>MINIMAL HUMAN<br>INTERACTION                                       | BUSINESS POLICY<br>DRIVES IT<br>MANAGEMENT     BUSINESS ACILITY<br>AND RESILIENCY                                |

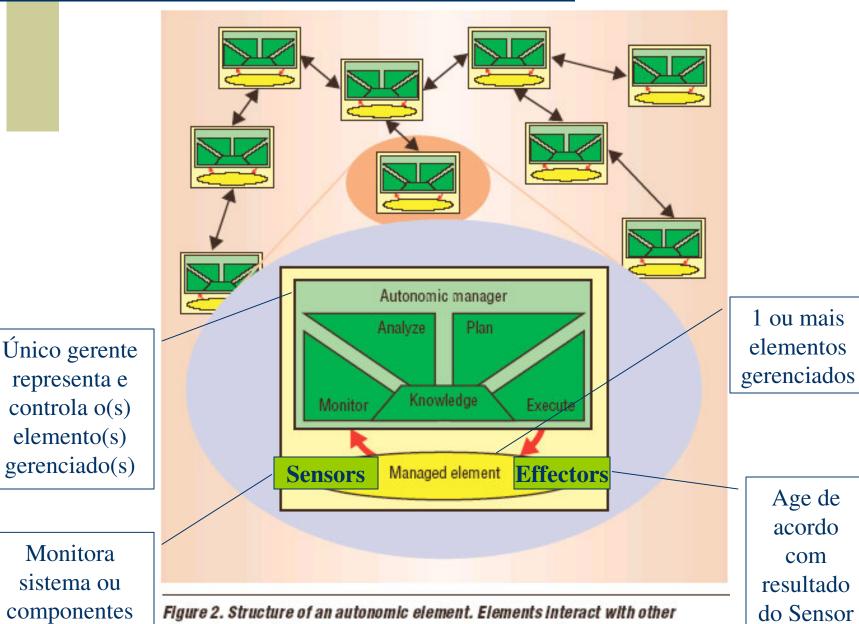
From IBM Global Services and Autonomic Computing, IBM White Paper, October 2002; see http://www-3.ibm.com/autonomic/pdfs/wp-igs-autonomic.pdf.

#### Como Funciona Atualmente

- A maior parte dos sistemas e redes em particular se encontram nos níveis 1 e 2
- Todas as decisões devem ser elaboradas e/ou tomadas por seres humanos
- Profissionais se sentem mais sobrecarregados com o sistema computacional das empresas do que com seus negócios

## Requisitos de Implementação

"This is bigger than any single IT company"


- Padronização
- Elaboração de protocolos específicos
- Avanços tecnológicos:
  - Gerenciamento baseado em políticas
  - Algoritmos adaptativos
  - Gerenciamento de cargas heterogêneas

## Elemento Autonômico (EA)

- Sistemas individuais que contém recursos e provê serviços para humanos ou outros EAs
- Compõe os sistemas autonômicos
- Gerenciam seu comportamento interno e relacionamento com outros EAs de acordo com políticas estabelecidas por humanos ou outros elementos

## Elemento Autonômico (EA)

- Aspectos importantes:
  - Tolerância a falhas
  - Dinamismo
  - Flexibilidade
  - Autonomia, pró-atividade
  - Consumidor X Provedor de serviços
- Laço de controle contínuo MAPE: monitora, analisa, planeja e executa



Monitora sistema ou

representa e

elemento(s)

Figure 2. Structure of an autonomic element. Elements interact with other elements and with human programmers via their autonomic managers.

1 ou mais

elementos

Age de

acordo

com

resultado

do Sensor

#### Ciclo de Vida de um EA

É importante que um EA gerencie seu ciclo de vida! Projeto, teste e verificação

Instalação e configuração

Monitoração, determinação e recuperação de problemas

Otimização e atualização

Desinstalação ou substituição

#### Relacionamento entre EAs

- Especificação
  - Input e Output services
- Localização
  - Localização dinâmica de outros elementos
  - Busca pelos Input services
- Negociação
  - Negociação para obtenção de serviços
  - Desenvolvimento de estratégias
  - Padronização

#### Relacionamento entre EAs

- Provisão
  - Provisão de recursos internos de um EA para outro
- Operação
  - EAs operam segundo os acordos negociados
  - Monitoração para garantir que acordo está sendo honrado
- Terminação
  - Término do serviços, EAs concordam em finalizar acordos

#### Utilizando Políticas

"Policy-driven computing is the brains of an autonomic system"

- Conjunto de considerações projetadas para guiar decisões no curso das ações
- Definem objetivos e limites que governam as ações dos EAs
- Visão: humanos provêem políticas de negócio, abstraindo-se de como elas serão efetivamente implementadas

- Modelos e abstrações de comportamento
- ◆ Teoria de aprendizado e otimização
- ◆ Teoria de negociação
- Modelagem estatística automatizada
- ◆ Padronização de conceitos, teorias, protocolos, ....
- Tratamento de especificações incompletas de domínios

- Políticas
  - Definição
  - Correlação
  - Segurança
  - Validação
  - Distribuição
  - Padronização

- Detecção e resolução de conflitos
- Integração de novos elementos
- Geração automática de Thresholds
- Construir e utilizar bases de conhecimento
- Lidar com a natureza dinâmica e multi-tarefa dos sistemas autonômicos
- Desenvolver técnicas de proteção contra ataques

- Desenvolver benchmarks para propriedades de auto-gerenciamento
- Criar novas linguagens e metáforas que permitirão que humanos monitorem, visualizem e controlem sistemas autonômicos

## IBM - F.A.Q.

- P.: Computação Autonômica não é o mesmo que criar máquinas inteligentes?
  - Resp.: Se "máquina inteligente" significa uma que possua poderes cognitivos humanos, a resposta é não. Mas se o significado for de um sistema que pode adaptar, aprender e conduzir tarefas previamente realizadas por humanos, então a CA envolve esta idéia.

## IBM - F.A.Q.

- P.: A Computação Autonômica substitui IA?
  - Resp.: Não. A computação Autonômica não requer a duplicação do pensamento consciente humano como objetivo final.
- P.: Quando os sistemas autonômicos estarão disponíveis?
  - Resp.: Verdadeiros sistemas autonômicos estão muito distantes de serem construídos, mas no curto prazo, funcionalidades autonômicas aparecerão em servidores, discos e softwares.

## IBM - F.A.Q.

- P.: Como será um mundo baseado na computação autonômica?
  - Resp.: A intervenção humana em tarefas associadas ao gerenciamento de sistemas parecerá tão arcaico e desnecessário quanto pedir para que um operador ajude na realização de uma chamada telefônica hoje em dia

# Iniciativas Empresariais

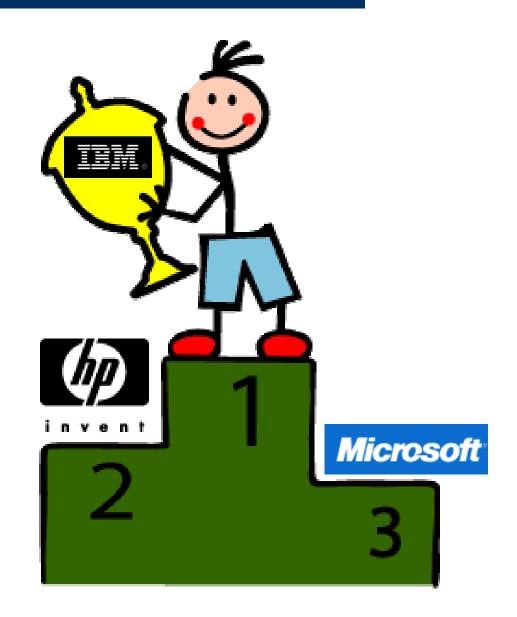
- As principais empresas de TI têm trabalhado bastante para fazer que seus nomes sejam sinônimo de auto-gerenciamento.
- IBM
  - Computação Autonômica



- Pioneirismo
- Grupos de pesquisadores
- Funcionalidades autonômicas em alguns de seus produtos

## Iniciativas Empresariais

HP




- Adaptive Enterprise
- Um importante e competente segundo colocado
- Microsoft





- Está um pouco afastada da "grande visão"
- Seus produtos não podem gerenciar softwares de outras empresas



### E as Redes de Sensores sem Fio?

- Redes com características bastante particulares
- Grande número de aplicações em ambientes inóspitos ou hostis
- Autonomic Networking será frequentemente a única forma de gerenciar as RSSFs

### E as Redes de Sensores sem Fio?

- Arquitetura Manna
  - Auto-gerenciamento de RSSFs
  - Baseada no paradigma de computação autonômica
  - Provê serviços e funções que podem ser executados de forma automática
  - Propõe uma nova dimensão de gerenciamento, a qual considera as características da RSSFs

#### Conclusões

- Fantasia ou Realidade?
  - "The information technology industry loves to prove the impossible possible" Paul Horn IBM Senior Vice-president
  - A indústria de TI terá que, de alguma forma,
     lidar com a complexidade dos sistemas atuais
  - Grandes empresas têm investido muito na idéia da computação autonômica

## Bibliografia

- "IBM Manifesto" Paul Horn
- "The Vision of Autonomic Computing" Jeffrey O. Kephart and David M. Chess IEEE Computer Society
- "The Dawning of the Autonomic Computing Era" A.G. Ganek and T.A. Corbi IBM Systems Journal
- "Research Challenges of Autonomic Computing" Jeffrey O. Kephart 27<sup>th</sup> International Conference on Software Engineering, 2005
- www.ibm.com/autonomic

# Dúvidas?



"The best measure of our success will be when our costumers think about the functioning of computing systems about as often as they think about the beating of their hearts"

> Paul Horn Senior Vice-president IBM