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Abstract. A fundamental issue in the design of a wireless sensor network is to devise
mechanisms to make efficient use of its energy, and thus, extend its lifetime. Due to
the paramount importance of energy conservation, it is highly desirable to define the
amount of energy each protocol can spend to perform its goal. Using this idea, we can
associate a finite energy budget for each network activity, and ask this activity to achieve
its best performance using only its budget. This is a new way of dealing with network
related problems, and should be considered a new paradigm to design algorithms for
networks that are battery powered, specially for wireless sensor networks. In this paper,
we present this new paradigm, and show how it can be used to construct the energy
map of a wireless sensor network. Our goal is to construct the best energy map using
only a defined amount of energy. Simulation results show that we can approach these
performance limits using the proposed finite energy budget model.

1. Introduction

During the last few years there was a great development of small, low-power hardware platforms
that integrate devices for sensing (and eventually actuating on the environment), processing data
received from or to be sent to the environment, and communicating using a wireless medium.
These computational devices are called sensor nodes and are grouped to form a wireless sensor
network, producing measurable responses to changes in physical conditions. A wireless sen-
sor network represents a new monitoring and control capability for applications such as envi-
ronmental monitoring, infrastructure management, public safety, medical, home and office secu-
rity, transportation, and military [Badrinath et al., 2000, Estrin et al., 2000, Lindsey et al., 2001,
Meguerdichian et al., 2001]. Some of these applications foreseen to sensor networks will require
a large number of devices in the order of tens of thousands nodes. Traditional methods of sen-
sor networking represent an impractical demand on cable installation, thus, leading to wireless
communication. Performing the processing at the source can drastically reduce the computational
burden on application, network, and management.

The large use of wireless sensor networks depends on the design of a scalable and low-
cost sensor network architecture. Furthermore, the design must consider the energy conservation a



fundamental issue and devise mechanisms for extending the network lifetime. This scenario leads
us naturally to the following problem: what is the best performance a protocol can achieve given
that it can spend only a finite amount of energy? Using this idea, we can associate a finite energy
budget with each network activity, and ask this activity to achieve its best performance using only
its budget. This is a new way of dealing with network related problems, and should be considered
a new paradigm to design algorithms for networks that are battery powered, specially for wireless
sensor networks.

The finite energy budget paradigm is highly applicable in the construction of the energy
map of a wireless sensor network. The energy map give us the information about the remain-
ing available energy in each part of the network, and it can aid in prolonging the lifetime of the
network. In [Mini et al., 2003, Mini et al., 2002], we present prediction-based approaches to con-
struct the energy map for wireless sensor networks. In these approaches, each sensor node tries to
estimate the amount of energy it will spend in the near future, and it sends this information, along
with its available energy, to the monitoring node. Simulation results indicate that prediction-based
approaches are more energy-efficient than the naive solution in which each node sends only its
available energy to the monitoring node.

The finite energy budget paradigm is exceedingly appropriate for the energy map con-
struction because it is worthless if we construct the best energy map spending all available energy.
It is highly desirable to define the amount of energy we can spend in the energy map construc-
tion, thus leaving the remaining energy to be used by the other network activities. This scenario
leads us naturally to the following question: what is the best energy map we can construct, given
a finite amount of energy for its construction? In this work, we extend the prediction-based ap-
proaches presented in [Mini et al., 2003, Mini et al., 2002] in order to define a way of constructing
the energy map in situations where a finite energy budget is defined. Our goal is to achieve the
performance limits in the construction of the energy map under the constrain that each node can
spend only a certain amount of energy in this construction.

The remainder of this paper is organized in the following way. In Section 2, we briefly
survey the related work. In Section 3, we show how the finite energy budget model is applied in
the energy map construction. In Section 4, we present the simulation results for this model. In
Section 5, we expand the basic finite budget model, presenting an adaptive process to build the
energy map. Section 6 shows the simulation results for the adaptive energy map construction.
Finally, in Section 7, we present the concluding remarks and future directions of this work.

2. Related Work

Sensor networks are a new kind of ad hoc network with some new characteristics and challenges.
These networks perform distributed sensing, wireless communication and distributed processing
using very limited resources. The design of wireless sensor networks is a very challenge task
and some new issues have to be addressed. These issues potentially affect many aspects of the
network design such as device-level communication primitives, routing, addressing mechanisms,
application architecture, and security mechanisms [Estrin et al., 1999]. The design of wireless
sensor networks is a very fertile area of research and more work needs to be done in order to set
up this new kind of network.

The information about the remaining available energy in each part of the network is called
the energy map and could aid in prolonging the lifetime of the network. We could represent
the energy map of a sensor network as a gray level image, in which light shaded areas represent
regions with more remaining energy, and regions short of energy are represented by dark shaded
areas. Using the energy map, a user may be able to determine if any part of the network is about to



suffer system failures in near future due to depleted energy [Zhao et al., 2002]. The knowledge of
low-energy areas can aid in incremental deployment of sensors because additional sensors can be
placed selectively on those regions short of resources. Routing protocols can also take advantage
of the available energy information in each part of the network. A routing algorithm can make a
better use of the energy reserves if it selectively chooses routes that use nodes with more remaining
energy, so that parts of the network with small reserves can be preserved. This protocol can also
form a virtual backbone connecting high energy islands. Other possible applications of the energy
map are reconfiguration algorithms, query processing, and data fusion. In fact, it is difficult to
think of an application and/or an algorithm that does not need to use an energy map. Therefore,
the energy map is an important information for sensor networks.

The work proposed in [Zhao et al., 2002] tries to obtain the energy map of sensor networks
by using an aggregation based approach. The technique described in that paper tries to obtain the
energy map of sensor networks by using an aggregation based approach. Energy information
of neighbor nodes with similar available energy are aggregated in order to decrease the number
of packets in the network. The main difference between the approach proposed in that article
and ours [Mini et al., 2003, Mini et al., 2002] is that in the former solution each node sends to
the monitoring node only its available energy, whereas in our work each node sends also the
parameters of a model that tries to predict the energy consumption in the near future. Then, in our
approach, each node sends to the monitoring node its available energy and also the parameters of
the model chosen to represent its energy drop. With these parameters, the monitoring node can
update locally the current available energy in each node of the network, decreasing the number of
energy information packets in the network.

3. Non-Adaptive Energy Map Construction under a Finite Energy Budget

Due to the paramount importance of energy conservation in wireless sensor networks, it is highly
desirable to define the amount of energy we can spend in the energy map construction, thus leaving
the remaining energy to be used by the other network activities. In this section, we show how the
finite energy budget paradigm can be applied in the construction of the energy map of a wireless
sensor network.

In the energy map construction, the term finite energy budget means that each node can
spend a certain amount of energy in the process of constructing the network energy map. This
amount of energy can be represented by the number of bytes each node can send with energy
information to the monitoring node. Knowing the size of this information, we can transform the
number of bytes into the number of packets each node can send with energy information. In this
work, the number of packets is used as the metric for energy budget, and we deal with it as the
maximum number of times each node can send its energy information to the monitoring node. Our
goal is to construct the best energy map under the constrain that each node can send no more than
a certain number of packets with energy information.

Ideally, a solution that approaches the performance limits in the construction of the energy
map should keep the error almost constant during all time, and the budget should finish exactly at
the end of the network lifetime. To achieve this goal, we have to decide when is the best time for
each node to send its energy information packet under a finite energy budget. In this section, we
propose a way of making this decision.

The moment to send the energy information packet is decided locally by each node with-
out exchanging information with its neighbors. Then, periodically, each node should decide if it
will send another energy information packet or not. We propose that this decision should be taken
according to a certain probability p. In that case, the value of p determines the frequency in which



the nodes will send their energy information and, thus, the amount of energy spent in the process
of constructing the energy map. The value of p depends on the following parameters: the number
of packets a node still can spend, the error between the predicted and the correct energy value,
and its estimated lifetime. This last supposition is reasonable because given the restriction of the
available energy in the sensor network, we can expect to design a wireless sensor network to work
for a period of time that can be estimated during its design phase.

In order to find the best way to determine the value of the probability p for each node, we
start defining the sending of an energy information as a binomial distribution in which the event
is the sending of an energy packet, and each time-step is an experiment. Thus, in each time-step,
we have a probability p that the event occurs (the node sends the energy packet) and a probability
(1 − p) that the event does not occur (the node does not send the energy packet). Then, we have
to find the correct value of p that maximizes the probability that each node sends the number of
packets determined by its budget. We call Ttotal the estimated lifetime, and Tnow the current time.
In addition, Ptotal is the number of energy information packets each node can send, and Pused the
number of packets the node has already used. Thus, a node still can send (Ptotal − Pused) packets
in the remaining (Ttotal −Tnow) seconds. To find the probability of sending a packet in each time-
step, we have to maximize the probability of happening (Ptotal −Pused) events in (Ttotal − Tnow)
experiments. If p is the probability of the occurrence of an event, we have that:

P (X = Ptotal−Pused) =
(

Ttotal − Tnow

Ptotal − Pused

)
p(Ptotal−Pused)(1−p)(Ttotal−Tnow)−(Ptotal−Pused) (1)

To find the best value for p in a way that a node will send (Ptotal − Pused) packets in
(Ttotal − Tnow) seconds, we have to maximize the function of equation (1). The value of p that
maximizes this function is:

p =
Ptotal − Pused

Ttotal − Tnow
(2)

Using equation (2), each node can determine the probability in which it will send an
energy packet in each second of simulation. This equation defines the value of p only in terms of
the energy budget and the estimated lifetime.

Nevertheless, each node also knows the error between the energy value predicted by the
monitoring node and the correct one. It can locally determine this value by just keeping the
parameters of the last prediction sent to the monitoring node. Thus, each node keeps track of the
error of its energy value. We use the percentage error because the impact of the difference between
the correct and the predicted value depends on the available energy at the node. For example, if
a node has 100 J of energy and we predict that it has 99 J is better than when we make the same
error of 1 J when the total energy available in a node is only 2 J. Because of that, we consider the
percentage error as being more suitable than its absolute value. Therefore, in our approach, the
error is always considered as a percentage value in relation to the correct available energy.

We intend to use the information of the error to change the value of the probability p in
such a way that when the error is small we should decrease the value of p in order to postpone the
sending of an energy packet. With this behavior we can save energy to be spent when the error is
larger. On the other hand, when the error is large, we should increase the value of the probability
in order to force the node to send a new energy information. This behavior can be obtained with
the aid of the function: f(x) =

(
1 − 1

cx

)
.

In Figure 1, we plot this function. We can see that this function tends to 1 when the value
of x increases. The speed of this trend depends on the value of constant c. This constant has to be
greater than 1, and the larger its value, the faster f(x) tends to 1. This function will be useful to
make the value of the probability p to adapt according to the error in the energy information.
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The desired adaptation is obtained by equation (3). In that equation, we redefine the value
of p and call it p′. Then, in each time-step, each node will send another energy information packet
with probability p′. In the first part of equation (3), the value of p is multiplied by the function
(1 − 1

cerror ), and p is decreased when the error is small and it is almost unchanged when the error
increases. However, when the error gets larger, the value of the probability of sending a packet
should increase and becomes larger than p. This behavior is obtained using the second part of
equation (3), in which the value of (1 − p) is multiplied by the same function but with different
parameters. The expression max(0, error−k) is different from zero only when the error is larger
than k. Using the value of c and k, we can control the shape of the curve that represents the
probability of sending a packet.

p′ = p ×
(

1 − 1
cerror

)
+ (1 − p) ×

(
1 − 1

cmax(0,error−k)

)
(3)

Before using equation (3), we have to decide on the value of k. This value determines
when the second curve will start. For example, if we want that the second curve starts when the
curve (1 − 1

cerror ) is 0.99 (this means that the value of p′ is 99% of p), we make (1 − 1
ck ) = 0.99

and thus we find k = logc 100. If we want that the second curve starts when the first is 0.999, we
make k = logc 1000. In Figure 2-a, we plot the curve of p′ when p = 0.5 and c = 2 for different
values of k. We can see that, when we increase the value of k, we are postponing the appearance
of the second slope and delaying the increase of the value of p′.

In Figure 2-b, we plot the curve p′ when the value of p is 0.5 and k = logc 1000 for
different values of c. We can see that the larger the value of c, the faster the value of p′ will be
1. Then, if a node has only a small number of packets to spend in the construction of the energy
map, it should use a small value of c. On the other hand, if a node can spend a lot of packets with
energy information, it should use a larger c.

4. Simulation Results for the Non-Adaptive Energy Map Construction

In order to analyze the performance of the finite energy budget scheme, we implemented the con-
struction of the energy map in the ns-2 simulator. The kind of sensor network we will work is one
in which the nodes are static and homogeneous, and also that there is only one static monitoring
node with plenty of energy. We suppose that nodes are deployed randomly forming a high-density
network in a flat topology. Also, the events are static and their duration and radius of influence
are randomly chosen. In relation to the data delivery model, we simulate an event-driven network
in such a way that sensors report information only if an event of interest occurs. In this case,
the monitoring node is interested only in the occurrence of a specific event or set of events. The
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communication model used is a cooperative sensor model in which the communication between
nodes is beyond the relay function needed for routing, and sensors communicate with each other
to disseminate information related to the event.

In our simulations, we use the State-based Energy Dissipation Model (SEDM) to describe
the behavior of sensor nodes and to simulate their energy dissipation. The event arrival is modeled
by a Poisson process, and its behavior is described by a static event model. This model repre-
sents a basic event that is static and has a fixed size. The radius of influence of each event is a
random variable uniformly distributed between event-radius-min and event-radius-max, and all
nodes within the circle of influence of an event will be affected by it. The duration of each event
is uniformly chosen between the values event-duration-min and event-duration-max seconds.

The SEDM is based on a framework in which the nodes have various operation modes
with different levels of activation and, consequently, different levels of energy consumption. In
this model, each node has four operation modes: mode 1: sensing off and radio off; mode 2:
sensing on and radio off; mode 3: sensing on and radio receiving; mode 4: sensing on and radio
transmitting. The transitions between these modes are described by the diagram of Figure 3. In
that diagram, the operation modes are represented by states 1, 2, 3 and 4. In addition, it was
necessary to represent more two states 2′ and 3′. The state i′ also represents the operation mode i.
As example, both states 2 and 2′ represent the operation mode 2, the only difference is that when a
node goes to state 2, it always starts a timer, while in state 2′, it verifies if is there any event for it.
Thus, in terms of energy consumption, state i is exactly the same as state i′. The only difference
is that the behavior of a node that goes to state i is different from the one that goes to state i′.

The numerical values chosen for the base case of our simulations can be seen in Table 1.
Unless specified otherwise, these values are used as the parameters in all simulations throughout
the remainder of this paper. Moreover, the monitoring node is positioned at the center of the field
at position (25, 25), all nodes are immobile, and can communicate with other nodes within their
communication range. Besides, the results showed in all simulations correspond to an average of
these values for 30 different runs.

In the finite energy budget, presented in the last section, the choice of the best value
for the constant c is of fundamental importance to determine the behavior of probability p′, and
consequently, the way each node will spend its budget. In order to analyze the influence of this
constant for different values of budget, we ran the prediction-based energy map for 100 nodes in
the same scenario described above. Figure 4-a shows the average percentage error when each node
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Parameter Value Parameter Value

Number of Nodes 1000 Sensor Field Size 50×50 m2

Initial Energy 100 J λ 0.1
Communication Range 15 m k logc 1000
Power consumption of mode 1 25.50 µW event-duration-min 5 s
Power consumption of mode 2 38.72 mW event-duration-max 50 s
Power consumption of mode 3 52.20 mW event-radius-min 5 m
Power consumption of mode 4 74.70 mW event-radius-max 15 m

Table 1: Default values used in the simulations.

can send only 2 energy information packets to the monitoring node, and, in Figure 4-b, we have
the mean budget for each value of c. We can see that the larger the value of c, the faster the nodes
use their budget. For example, for c = 20, the budget is used fast and, at the end of simulation,
almost all nodes have already spent their budget, increasing the mean error. On the other hand, for
c = 1.05, all nodes spend their budget slowly.

Using the constant c = 1.05 and a budget size of 2 packets/node, the error starts larger
and goes down after the start up period, keeping almost constant until the end of simulation. This
behavior can be explained by equation (2). As the denominator represents the simulation time, and
the numerator the budget size per node, the denominator range value is larger than the numerator
one. Therefore, at the beginning of simulation, the value of p tends to be decreased due to the large
value in the denominator. This collateral damage is good, because it is better to make an error at
the beginning of simulation, when the nodes have more energy, than at the end, when the energy
becomes even scarcer. Then, the shape of the error is good for sensor network applications.

We can see in Figure 4-b that, for c = 1.05, the nodes do not spend all their budget. In a
situation like this, we can increase the value of c in order to use all the available budget to obtain
a smaller error.



0

1

2

3

4

5

6

0 100 200 300 400 500 600 700 800 900 1000

M
ea

n 
E

rr
or

 (
%

)

Time (s)

c = 1.05
c = 2

c = 10
c = 20

(a) Mean Error (%).

0

0.5

1

1.5

2

0 100 200 300 400 500 600 700 800 900 1000

M
ea

n 
B

ud
ge

t (
nu

m
be

r 
of

 p
ac

ke
ts

)

Time (s)

c = 1.05
c = 2

c = 10
c = 20

(b) Mean Budget (number of packets).

Figure 4: Changing the value of c when each node can spend 2 packets with energy infor-
mation, k = logc 1000 and λ = 0.1.

Next, we repeated the simulation above with a budget size of 4 packets/node as presented
in Figure 5. Using c = 1.05, the nodes do not spend all their budget and the error is large. Using
c = 20, the nodes spend fast their budget and, at the end of simulation, the error gets larger because
all budget is used. But, if we use c = 2, we achieve a good performance because the budget is
over almost at the end of simulation, and the error keeps almost constant during all the time. This
means that the value of c = 2 is a good choice when we have a budget size of 4 packets/node.
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Figure 5: Changing the value of c when each node can spend 4 packets with energy infor-
mation, k = logc 1000 and λ = 0.1.

When the budget size is increased, we should use a larger constant. This can be seen in
Figure 6, where a budget size of 8 packets/node is used. In this case, the best performance was
achieved using c = 10 or 20. We can also observe that for c = 1.05, the budget is not appropriately
used and, at the end of simulation, the nodes spend more of their budget and the error curve goes
down. Even though, for this constant, only a small amount of the available budget is used.

Observing the slope of the budget curve, we can see that equation (3) provides a small
adaptation during the simulation. For all values of c, when time goes by, the slope of the budget
curve is changed in order to adjust to the remainder budget and simulation time. Nevertheless, this
adaptation is not enough to achieve our goal in the energy map construction: use all the available
budget keeping the percentage error almost constant. The performance of using equation (3) to
decide when sending the energy packet is highly dependable on the right choice of the constant c.
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Figure 6: Changing the value of c when each node can spend 8 packets with energy infor-
mation, k = logc 1000 and λ = 0.1.

If a wrong value of c is chosen, the budget cannot be completely used or it can be used too fast
increasing the percentage error. Therefore, in order to achieve the desired behavior, it is necessary
to find a way of choosing the value of constant c automatically. This is discussed in the next
section.

5. Adaptive Energy Map Construction under a Finite Energy Budget

In the previous section, we saw that the performance of the finite energy budget approach is highly
dependable on the value of constant c. Now, we present a way of changing the value of this
constant automatically in such a way that when we have a large budget, a big value of c is used
and, when a small budget is available, its value should be small.

The key information that guide us to choose the right value of c is the budget curve. We
start the adaptive process analyzing the budget curve periodically. As example, for each 3% of the
simulation time, we apply a linear regression in the budget curve in order to predict when it would
be the end of budget. Using this information, we can make the following observations:

1. If the predicted end of budget is beyond the end of simulation, the value of c must be
increased, otherwise, it must be decreased;

2. In other to have a conservative behavior, at the beginning of simulation, we should increase
less and decrease more the value of c, depending on the case. On the other hand, at the
end of simulation, we should increase more and decrease less its value. This behavior is
justified because it is more difficult to keep the percentage error constant at the end of
simulation than at the beginning since, at the end, the available energy is lesser.

3. When the value of c is small, we should increase less its value. This is true because for
small c, small changes in its value produce more distant curves.

The three remarks described above can be seen as the requirements that an adaptive pro-
cess must follow. Next, we describe how we deal with each one of these requirements.

In order to achieve the first requirement, we calculate a value dif as being the amount in
percentage that we should increase or decrease in the predicted end of budget in order to make
this value equal to the end of simulation time. If dif > 0, we increase the value of c, otherwise we
decrease the value of c. The amount of increasing and decreasing is defined taking into account
the second requirement. Knowing that t is the percentage of simulation time already done. The



percentage of increasing is given by the function:

inc =

{
dif

0.25 t2 if t ≤ 0.5,

dif + dif
0.25(t − 0.5)2 if t > 0.5.

(4)

The amount of decreasing is set according to the following equation:

dec =

{
dif

0.25 t2 − dif
0.25 t + 2 dif if t ≤ 0.5,

dif
0.25 t2 − 8 dif t + dif

0.25 if t > 0.5.
(5)

Figure 7 shows these functions when |dif| = 0.3. This means that the predicted end of
budget should be increased or decreased in 30% in order to achieve the end of simulation. We
can see that using this function, at the beginning of simulation, we increase less the value of c
and decrease more. On the other hand, at the end of simulation, we increase more and decrease
less its value. This approach provides a conservative behavior since it will try to save budget at
the beginning of simulation to be used at the end. This is a good approach because, at the end of
simulation, the available energy is smaller, and thus it is more difficult to keep the percentage error
constant.
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Figure 7: Increase and decrease function.

In other to understand the third requirement, we have to notice that the smaller the value
of c, more distant will be the curves when we make a change in its value. In Figure 8, we can
see that the distance between the curves c = 1.05 and c = 1.05 + 10% = 1.155 is bigger than
the distance between the curves c = 2 and c = 2 + 10% = 2.2. This means that when we are
working with a small c, the error is bigger, and a small increase in its value will change p′ to a
curve where the probability of sending a packet for the current error is almost 1. In situations like
this, the new value of c will make all nodes send an energy information packet at the same time,
ending the budget. In addition, small values of c happens in situations in which a small budget is
assigned to the energy map construction, and, in these cases, an error in the decision of when to
send an energy information packet can not be undo.

To illustrate the problem with small values of c, we run a 2000 second simulation with a
budget size of 1 packet per node. Figure 9-a shows the value of c in each second of simulation
and, in Figure 9-b, we plot the error in the energy map. The simulation starts with c = 1.01 and, at
time 200 s, the adaptive process decides to increase its value to c = 1.028358. This small change
makes all nodes send their energy packet at the same time, ending the budget. Besides, in this
case, the error can not be undo because the budget associated with each node is only 1 packet.
Because of that, no more energy information packet can be sent and the error curve goes up.
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Figure 9: Using a small budget: budget size= 1 packet/node, k = log c 1000 and λ = 0.1.

In order to solve the problem of increasing and decreasing the value c when it is small,
we made another modification in the value of inc for small values of c. If the value of c is smaller
than 1.001, we make inc = inc

100 . If the value of c is between 1.001 and 1.01, we make inc = inc
10 .

The algorithm presented in Figure 10 summarizes all the adaptive process described above.

6. Simulation Results for the Adaptive Energy Map Construction

The goal of this section is to analyze the performance of the adaptive energy map construction
described in the last section. To this end, we change the simulation time and the size of the budget,
and plot the error and the available budget in each second of simulation.

Figure 11 shows the results for a simulation of 500 s using 1, 3, 5 and 7 packets. For all
sizes, the error is almost constant during all the simulation time, and the budget finishes at the end
of simulation, meaning that the adaptive process achieved a good performance in these scenarios.

If we take a look at Figure 11-b, it is possible to see that the budget curves are above the
straight line defined by the function y = − budget

simulationTime x + budget. The fact that the budget curve
is above this fuction means that the adaptive process is achieving a conservative behavior of saving
budget at the beginning of simulation to be spent at the end.

Figure 12 shows the results for 1000 second simulation. In this case, the error curve is not
so constant like in the previous case, but the budget curve is still well used during all simulation.
Figure 13 illustrates the results for a simulation period of 1500 s. We can see that even when each
node can use only 1 packet during all simulation, the use of the budget is distributed during all the
simulation time. The same can be seen, in Figure 14, in which a simulation period of 2000 s is
analyzed. In all cases, the budget is used uniformly to keep the error almost constant.

It is important to point out that, in this work, the budget is modeled as the number of
packet transmissions. However, other budgets could also be considered. As an example, we can



ADAPTIVE ALGORITHM:

Input:

simulationTime {total amount of simulation time}
t {percentage of simulation time already gone}
c {current value of c}

begin

endOfBudget← LinearRegression(budgetCurve);

dif← (endOfBudget − simulationTime) / endOfBudget;

if (dif > 0) then begin

if (t ≤ 0.5) then

inc← (dif × t2) / 0.25

else inc← dif + (dif × (t − 0.5)2) / 0.25;

if (c ≤ 1.001) then

inc← inc / 100

else if (c ≤ 1.01) then

inc← inc / 10;

c← c + c × inc;

end

else begin

if (t ≤ 0.5) then

dec← (dif × t2) / 0.25 − (dif × t) / 0.25 + 2 × dif

else dec← (dif × t2) / 0.25− 8 × dif × t + dif / 0.25;

c← c + c × dec;

end;

end {Adaptive Algorithm}.

Figure 10: Adaptive Algorithm

define a budget associated with the computations in a way that we define the maximum number
of times the linear regression can be executed. We can incorporate this computation budget in our
model only changing the frequency in which the budget is verified.

The adaptive process proposed in this paper works fine for the sensor network analyzed
in this work. Other kinds of sensor networks must be carefully studied. As example, the adaptive
process is highly dependable on the amount of initial energy. The bigger this value, the more
difficult to keep the percentage error constant. In other words, more budget will be necessary at
the end of simulation to keep the percentage error constant, meaning that the budget curve should
be more above the straight line y = − budget

simulationTime x + budget than it was in the simulations
presented in this work. However, we support the idea that the three requirements described in
Section 5 must be achieved by the adaptive processes for all kinds of wireless sensor networks.
Consequently, the adaptive process should be guided by the three requirements, but it should also
take into account the characteristics of the the sensor networks.

7. Conclusions
In this work, we presented a new model for constructing the energy map of wireless sensor net-
works under a finite energy budget. The energy budget was used in the context of defining the
maximum number of packets each node can send with energy information to the monitoring node.
We propose a model to represent the probability in which a node sends an energy information
packet, and an approach to adjust this probability in order to construct the best energy map un-
der a given energy constraint. Simulation results indicate that we can approach the performance
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Figure 11: Changing the budget size in a 500 second simulation, k = log c 1000, λ = 0.1.
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Figure 12: Changing the budget size in a 1000 second simulation, k = log c 1000, λ = 0.1.

limits using the proposed finite energy budget model. To the best of our knowledge, there is no
other work related with the design of protocols for wireless sensor networks under a finite energy
budget. This is a novel technique.

It is important to notice that when we design a wireless sensor network that is battery
powered, it would be interesting to determine the energy budget associated with each network
activity. This is a new paradigm in the design of wireless sensor networks. We plan to investigate
the use of this new paradigm in other network activities. As example, we can design mechanisms
that disseminate information to the maximum number of nodes under the constraint that they can
use only a determined amount of energy. Another possibility is the design of network management
functions to achieve their best performance using only a finite amount of energy.
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