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Abstract. The recent area of Wireless Sensor Networks (WSNs) has brought new challenges to developers of net-
work protocols. One of these challenges consists of maintaining the coverage of the monitoring area and the
connectivity between the network nodes, preferably accomplishing the management of the network resources. This
problem can be modeled as a Mathematical Programming problem, but it requires a hard computational effort
and, since the WSNs may be very dynamic, any slow management decision can lead to serious problems. In this
work, the problem was decomposed into two sub-problems and solved by a hybrid approach, which consists of two
phases: a genetic algorithm and a local search based on two classical graph algorithms.

1. Introduction
A Wireless Sensor Network (WSN) is a new kind of ad-hoc network, with distributed sensing and processing
capacities. WSNs can be composed of tens to hundreds of small battery-powered devices, called sensor nodes,
and they can be used in a large number of applications, such as indoor environments control, air pollution level
monitoration, in assembly lines and as military spies, providing information about enemies movements.

Figure 1(a) shows a common WSN architecture: many sensor nodes monitoring an area and reporting
information to the sink node, which is a special node used to send information outside the network. Figure 1(b)
shows two examples of sensor nodes: Mica2 (the biggest one) and Mica2Dot [Crossbow Technology, 2003], which
can perform activities like sensing, communication and processing. Usually the hardware of a sensor node includes:

• A sensor board, with at least a kind of sensor on it;
• A limited quantity of memory (128 KB in the case of Mica Motes);
• A processor, with limited power of processing (8 MHz for Mica Motes);
• A radio to perform wireless communication, generally under IEEE 802.11 specifications;
• A battery, which provides energy to all the other components.

Since a WSN can be deployed into a hostile area (such as a volcano crater), and its number of nodes
can be high, recharging or replacing nodes’ battery may be inconvenient. So, the development of power-saving
protocols for the organization of these networks can extend their lifetime, what is very desirable. Thus, in this
paper we propose an approach that performs this organization, from the WSN’s management point of view. Our
main goals are:

• To turn the minimal number of nodes on, controlling the density and indirectly reducing some problems
like radio interference, collision of packets and media congestion [Tilak et al., 2002];

• To ensure that this number of active nodes can cover the monitoring area;
• To guarantee that the information can flow outside, that is, the active nodes are connected to the sink;
• To extend the network lifetime.

This problem is known as CCP-WSN (Coverage and Connectivity Problem in Wireless Sensor Networks).
CCP-WSN is a network-design-like problem and can be modeled as a mixed integer linear programming (MILP)
problem, but as we will be seen, its formulation requires a hard computational effort. To achieve good solutions
in a feasible processing time, the problem was decomposed into two sub-problems, which are solved by a hybrid
approach, which works in a GRASP-fashion way: first it uses a genetic algorithm for a stochastic search, and then it
applies a local search, based on Prim [Ziviani, 2003] and Dijkstra [Ziviani, 2003] [Tanembaum, 1996] algorithms.

The remainder of the paper is organized as follows: in section 2 we detail some related works; in section
3 we introduce CCP-WSN mathematical formulation; in section 4 we describe CCP-WSN decomposition and
present the two sub-problems, as well the algorithms proposed to solve them; some computational results and
comparisons between the exact model and our hybrid approach are reported in section 5. Finally, we present our
conclusions and future work in section 5.



(a) A common architecture of a WSN. (b) Sensor nodes of the family
Mica Motes.

Figure 1: Wireless Sensor Networks.

2. Related work
Some papers have proposed protocols and algorithms to extend the lifetime of a WSN, through an intelligent
management of its resources, but the most discuss only the Coverage Problem. Vieira et al [Vieira et al., 2003] use
a technique based on the Voronoi algorithm to discover backup nodes (redundant nodes which can be turned off to
safe energy). The Voronoi algorithm is also used by Meguerdichian et al [Meguerdichian et al., 2001], to discover
dense and non-dense areas of the network.

An integer linear programming formulation for the Coverage Problem is proposed by Megerian and
Potkonjak [Megerian and Potkonjak, 2003]. The Coverage Problem is modeled using the Set Covering Problem in
[Slijepcevic and Potkonjak, 2001], and a heuristic is presented to solve it. The modeling based on the Set Covering
Problem is also used by [Siqueira et al., 2003], which also takes some connectivity assumptions to keep the whole
network connected.

Meta-heuristics have already been used in the field of WSNs. Heinzelman et al [Heinzelman et al., 2002]
present LEACH-C, a routing protocol for hierarchical WSNs. A Simulated Annealing algorithm is used to com-
pute the best set of cluster-heads (group leaders) nodes. Quintão et al in [Quintao et al., 2004] propose a genetic
algorithm for the on-demand Coverage Problem.

In [Nakamura, 2003] and [Menezes, 2004] there are some formulations based on Mixed Integer Linear
Programming (MILP), which solve the Coverage and Connectivity Problem in WSNs. The work of Nakamura
presents a dynamic node scheduling for all the network lifetime. Menezes solves the problem using Lagrangean
Relaxation, and also considers scenarios with obstacles.

Problems generated by high density of nodes are discussed by Tilak et al [Tilak et al., 2002]. A manage-
ment architecture for WSNs (as well its impact over the network working) is presented by Ruiz et al [Ruiz, 2003].

3. CCP-WSN Mathematical Formulation
Our problem can be stated as: Given a monitoring area A, a set of demand points D, a set of sensor nodes S

and a sink node m, the Coverage and Connectivity Problem in Wireless Sensor Networks (CCP-WSN) consists of
assuring that at least n sensor nodes from S are covering each demand point j ∈ D in the monitoring area A, and
that there is a path between these nodes and the sink node m. CCP-WSN is formulated as a mixed integer linear
programming (MILP) problem. The following parameters are used in our formulation:

S set of sensor nodes
D set of demand points
Ad set of arcs connecting sensor nodes to demand points
As set of arcs connecting sensor nodes
Am set of arcs connecting sensor nodes to the sink node
Id(A) set of arcs (i, j) ∈ Ad incoming on the demand point j ∈ D

Is(A) set of arcs (i, j) ∈ As ∪ Ad incoming on the sensor node j ∈ S

Os(A) set of arcs (i, j) ∈ As ∪ Am outgoing the sensor node i ∈ S

n coverage precision that defines how many nodes should cover a demand point
ME node maintenance energy
TE node transmission energy
RE node reception energy
NC coverage penalty, cost of no coverage of a demand point

The model variables are:



xij variable that has value 1 if node i covers demand point j, and 0 otherwise
zlij decision variable that has value 1 if arc (i, j) is in the path between sensor node l and the sink node m, and 0

otherwise
yi decision variable that has value 1 if node i is active, and 0 otherwise
hj variable to indicate if demand point j is not covered
ei variable to indicate the energy consumed by node i

The formulation proposed is presented below.

min
∑

i∈S

ei +
∑

j∈D

NCj × hj (1)

The objective function (1) minimizes the network energy consumption and the number of not covered
demand points. Since we minimize the network energy consumption, the mathematical formulation is indirectly
reducing the number of active nodes, regarding to equation (10). Of course our objective function does not cor-
respond to all the goals stated in Section 1 (Introduction), but the result of our whole model deals with them.
According to the work presented in [Vieira et al., 2003] and the results from [Tilak et al., 2002], it was suggested
that the density control in a WSN can reduce problems like radio interference between neighbors nodes, as well
collision of packets and media congestion.

The constraints (2), (3), (4), and (5) deal with the coverage problem. They assure that the active nodes
cover the demand points (we always consider a demand point per square meter).

∑

ij∈Id
j
(Ad)

xij + hj ≥ n, ∀j ∈ D (2)

xij ≤ yi, ∀i ∈ S, ∀ij ∈ Ad (3)

0 ≤ xij ≤ 1, ∀ij ∈ Ad (4)

hj ≥ 0, ∀j ∈ D (5)

The constraints (6), (7), (8) and (9) are related to the connectivity problem. They assure a path between
each active sensor node l ∈ S and the sink node m.

∑

ij∈Is
j
(As)

zlij −
∑

jk∈Os
j
(As∪Am)

zljk = 0, ∀j ∈ (S ∪m− l), ∀l ∈ S (6)

−
∑

jk∈Os
j
(As∪Am)

zljk = −yl, j = l, ∀l ∈ S (7)

zlij ≤ yi, ∀i ∈ S, ∀l ∈ (S − j), ∀ij ∈ (As ∪ Am) (8)

zlij ≤ yj , ∀j ∈ S, ∀l ∈ (S − j), ∀ij ∈ (As ∪ Am) (9)

The energy constraints (10) and (11) define the energy limit values. Constraints (11) also justify why we
declared our model as a Mixed Integer Linear Programming problem (variable ei can have real values).

MEi × yi +
∑

l∈(S−i)

∑

ki∈Is
i
(As∪Am)

REi × zlki +

∑

l∈S

∑

ij∈Os
i
(As∪Am)

TEij × zlij ≤ ei, ∀i ∈ S (10)

Note that a node spends its energy with self-maintenance and with transmission and reception of packets.

ei ≥ 0, ∀i ∈ S (11)

The constraints (12) define the decision variables as boolean, and the constraints (13) define the others
variables as real.

y, z ∈ {0, 1} (12)

x, h, e ∈ < (13)

The model solution consists of a subset of active nodes and also reports which demand points are not
covered, assuring the best possible coverage, and provides a path between the active nodes and the sink node,
assuring the network connectivity. The solution also estimates the network energy consumption.



4. CCP-WSN decomposition
How CCP-WSN requires hard computational effort for optimal solutions, it was decomposed into two sub-
problems; the used strategy consists of:

1. First a Coverage Problem is solved, finding the minimal number of nodes needed to cover all the moni-
toring area; for this sub-problem it is used a genetic algorithm;

2. A local search in the best solution found in the previous step is made to ensure the connectivity between
the active nodes. In this step Prim’s and Dijkstra’s algorithms are applied.

A heuristic based on genetic search was chosen to solve the Coverage Problem because this kind of
algorithm usually provides more than one good (feasible) solution, and maybe this redundance can be interesting
to the manager of the network. Otherwise, we do not try to solve all the problem with a genetic algorithm because
it is difficult to keep the feasibility of the solutions in the original CCP-WSN, since it is a problem with many
constraints. We would have to search for very special operators, to avoid the generation of non-feasible solutions,
what could involve even hard computational tasks.

4.1. Coverage Problem Formulation and proposed genetic algorithm

We use the Coverage Problem formulation proposed by Nakamura [Nakamura, 2003]. The problem can be stated
as: Given a monitoring area A, a set of sensor nodes S and a set of demand points D, the Coverage Problem
consists of assuring that at least one sensor node s ∈ S will cover each demand point j ∈ D. The formulation
uses the previous parameters and the energy cost AE to turn a sensor on.

The model can be formulated as:

min
∑

i∈S

AEi × yi +
∑

j∈D

NCj × hj (14)

subject to: ∑

ij

xij + hj ≥ 1, ∀j ∈ D and ∀ij ∈ Ad (15)

xij ≤ yi, ∀i ∈ S and ∀ij ∈ Ad (16)

0 ≤ xij ≤ 1, ∀ij ∈ Ad (17)

hj ≥ 0, ∀j ∈ D (18)

y ∈ {0, 1} (19)

x, h ∈ < (20)

The objective function minimizes the number of active nodes and the number of uncovered demand points.
Constraints (15) assure that each demand point may be covered by a sensor node or keep uncovered. Constraints
(16) impose that a node only can sense if it is active. The remainder constraints deal about variables’ limits.

In order to improve our whole algorithm efficiency, we changed the Coverage Problem objective function
as follows:

min
∑

i∈S

(AEi + PCi)× yi +
∑

j∈D

NCj × hj (21)

where PCi is a variable that contains the cost of the path from each node i ∈ S to the sink node m (computed by
the Dijkstra’s algorithm applied to all nodes of the network, during a pre-processing phase). The variable PCi is
used as a penalty for those nodes whose path to the sink node is expensive, and the results show that this change is
a bit interesting, improving our algorithm (in fact, this is a way for looking to the Connectivity Problem during the
genetic algorithm search).

To solve the changed Coverage Problem we propose a genetic algorithm based on binary encoding, as
described below:

4.1.1. Encoding

We use binary encoding of parameters. Each chromosome has size T equal to the number of sensor nodes in the
network. Each position of the chromosome represents a gene: if a chromosome position is set to 1, this implies
that the node corresponding to this position is turned on in this chromosome. For example, suppose a network
containing 10 nodes. Also suppose that one of the chromosomes has the following nodes activated: (0, 2, 7, 9); so,
its binary representation would be as follows:

1 0 1 0 0 0 0 1 0 1

Given a set of active nodes from S, we can evaluate the Coverage through a binary coverage matrix, which
reports, for an input (i, d), if sensor node i covers demand point d.



4.1.2. Genetic algorithm general specification

In our algorithm the following operators are implemented:

• Selection: uses Cost Weighting Pairing [Haupt and Haupt, 1998]. When two chromosomes are selected,
they are always combined;

• Recombination (crossing over): implements the easiest way, in which a random number c is generated
and in this position the crossing over takes place. Each couple of recombined chromosomes generates
two offsprings, which go to the place of the worst chromosomes;

• Mutation: happens with a small probability µ. The used value (as well as the population size and number
of generations) is described in the Computational results section.

4.2. Ensuring connectivity to CCP-WSN

The solution generated by the genetic algorithm random search may cover well the monitoring area, but maybe
some nodes can be disconnected. This is a problem because the information could not flow outside and arrive
to the final user. So we need a strategy to turn the network into a connected network. For this task Prim’s and
Dijkstra’s algorithms are used. Our strategy consists of two phases:

1. Initially we apply Prim’s Minimum Spanning Tree (MST) algorithm over a graph G1 containing the active
nodes of the network (set during the last step). The condition for an edge belong to G1 is the following:
An edge (u, v) can belong to G1 only if the distance between nodes u and v ∈ G1 is shorter than the
max communication range of the nodes. The result of the application of this MST algorithm is a tree that
could be used as a routing tree. Therefore, given the condition above, some of the active nodes may be
disconnected from the tree. So, we apply the next step.

2. A graph G2 is created, containing all the nodes of the network. The same condition described above is
applied: An edge (u, v) can belong to G2 only if the distance between nodes u and v ∈ G2 is shorter than
the max communication range of the nodes. So, the Dijkstra’s shortest path algorithm is applied from
each one of the disconnected nodes to the sink node. Actually, this path may go across non-active nodes
(otherwise all active nodes would be connected during the last step). Thus, we also turn these not active
nodes on.

4.3. Final algorithm

Algorithm 1 summarizes the hybrid approach used to solve the CCP-WSN.

Algorithm 1 Hybrid(set S of sensor nodes)
for all i ∈ S do

PCi ← Compute Dijkstra(i, sink);
end for
Compute Coverage Matrix; /*notices if a sensor node i covers a demand point j*/
Connectivity Matrix; /*notices the Euclidian distance between a sensor node i and another node l*/
/*Genetic algorithm*/
Create random initial population, with size |PopInitial|;
Evaluate initial population using equation (21);
ShellSort (Initial population); /*Sort*/
Natural Selection(Initial Population); /*removes the worst chromosomes from the initial population*/
while NOT stop condition do

Select chromosomes for mating using Cost Weighting Pairing;
Proceed matching/crossing over;
Mutation with probability µ;
Evaluate new population using equation (21);
Shellsort(new Population);

end while
/*end of genetic algorithm*/

/*Local search for connectivity ensuring*/
Compute Prim(active nodes);
while there is a not connected node i do

Compute Dijkstra(i, sink);
end while
/*end of local search*/
Compute objective function (1);
/*end of hybrid algorithm*/



5. Computational results
In this section we report some of our results that were obtained using our CCP-WSN implementation in CPLEX
7.0 and our hybrid algorithm. First of all we define some parameters for our genetic algorithm (some of them were
also used in CPLEX). Most of the values are obtained from the analysis of the results from [Nakamura, 2003] 1

and are showed in Table 1.

Parameter Value Description
ME 18 Maintenance energy
AE 18 Cost to turn a sensor node on
RE 2 Reception energy
NC 10000 Coverage penalty

PopInitial 1400 Number of chromosomes in the initial population
SizePop 600 Number of chromosomes in each generation

Sensing range 15 Sensing range of all sensor nodes
µ 10% Mutation probability

MaxGenerations 25 Max number of generations (genetic algorithm stop condition)
Ttx 0.25 Time during a sensor node will transmit data

Table 1: Parameters values.

Eight instances named I1, I2, I3, I4, I5, I6, I7 and I8 are used for our tests. We consider square monitoring
areas and the sink node positioned in the center of the area. Instance I1 consists of 32 nodes in a square area of
40m×40m. I2 consists of 32 nodes in an area of 50m×50m, I3 contains 64 nodes in an area of 40m×40m, and
I4 consists of 64 nodes in an area of 50m×50m. For these instances we considered the max communication range
of 20m. Instances I5, I6, I7 and I8 contain the same topology configuration of I1, I2, I3 and I4, but for these
instances the max communication range of 25m is considered. Figure 2 illustrates the topology maps used in our
simulations. We run the CCP-WSN on the commercial software CPLEX 7.0 and our algorithm for the 8 instances
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(a) Topology for I1 and I5
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(b) Topology for I2 and I6
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(c) Topology for I3 and I7
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(d) Topology for I4 and I8

Figure 2: Topology maps used for computational analysis (generated randomly).

described above. As the genetic algorithm performs a stochastic search, we run each instance 33 times and take
1transmission energy (TE) value was obtained from MicaMotes Manual [Crossbow Technology, 2003] and changes in accordance with

distance.



medium values and standard deviation (represented as ∆() in the tables). Table 2 shows the results obtained by
CPLEX and Table 3 presents the results obtained by our algorithm:

Instance Active nodes Coverage Time (sec) Objective
I1 5 100% 347.2 101.525
I2 9 100% 239.83 200.025
I3 5 100% 1816.26 101.350
I4 8 100% 21408.67 179.600
I5 5 100% 809.30 101.525
I6 9 100% 353.33 192.175
I7 5 100% 5106.56 101.400
I8 7 100% 5575.84 147.525

Table 2: CPLEX optimal solutions.

Instance Active nodes ∆(Active) Time (sec) ∆(Time) Objective ∆(Objective)
I1 5.303 0.054 51.849 1.953 117.279 12.321
I2 11.090 0.196 92.061 0.527 273.580 34.923
I3 5.333 0.060 97.601 0.804 116.929 24.449
I4 10.393 0.073 163.920 1.118 250.505 28.046
I5 5.363 0.113 51.499 0.496 118.456 14.6821
I6 9.000 0.000 91.890 0.606 227.145 10.365
I7 5.090 0.016 99.894 13.347 108.478 7.728
I8 9.151 0.027 192.932 20.402 226.749 26.515

Table 3: Hybrid algorithm results.

The hybrid algorithm always reaches 100% of coverage of the monitoring area in all tests for all instances,
and the results show that the whole algorithm gets on in all instances, regarding the number of active nodes, and
solves fastly all of them, including the largest ones (what is a quite interesting since the WSNs can be very dynamic
and the manager should answer fastly to the changes). The value of the objective function is also close to the
optimal for the smallest instances. The run time of the pos-processing phase was also computed. We discovered
this phase spends no significant time. It happens because the algorithms used (Prim and Dijkstra) are both very
efficient: for a graph G(V, E), where V is the set of vertices and E is the set of edges, Prim’s algorithms runs on
O(E log V ) and our implementation of Dijkstra algorithm [Tanembaum, 1996] is polynomial.

Figure 3 illustrates the medium evolution of the genetic algorithm used to solve the changed Coverage
Problem for each group of instances. We notice the algorithm convergence generally happens with soft curves,
what is interesting because it can avoid local minimum. As expected, for some instances the behavior of the
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Figure 3: Genetic algorithm evolution for all instances.

algorithm is similar, for example, I1 & I5, I3 & I7 and I2 & I6, since they have the same topology and the genetic
algorithm just deals to the changed Coverage Problem (in fact overlapping can be detected on the graphs). This
observation shows that the shortest paths found when we are using a communication range of 25m are not much
better than those when the communication range is of 20m (at least in our instances, of course this result can not
be true for all cases and for different sizes of ranges).



To obtain more fonts of comparison, we tried to get results with CPLEX running in the same amount of
time of our algorithm, but no feasible solution was found. These results confirm the advantage of the use of the
hybrid algorithm in those situations where the processing time plays an important role.

6. Conclusions
In this paper we propose a hybrid approach to solve the Coverage and Connectivity Problem in Wireless Sensor
Networks. Our algorithm could run together with a WSN management architecture, like the one proposed in
[Ruiz, 2003]. Our results show that our algorithm performs well in some scenarios, and runs fast over all of them,
including the largest ones. This is a important observation since WSNs may be very dynamic, and the manager
should react fastly to the changes, otherwise serious problems such death of nodes or loses in the degree of QoS
(Quality of Service) can occur. Simulations have been developed in the software Network Simulator (ns-2) to
validate our results.

As future work we intend to compute results for new instances and to develop new strategies to solve the
Connectivity Problem, dealing more with it during the genetic algorithm phase (in fact, we are trying to discover an
encoding and soft operations suitable for our whole problem). We also intend to develop some strategies to improve
the genetic algorithm, using hybrid operations, like GRASP’s path-relinking during the chromosomes matching.
We also would like to use our theorical results as a background for the development of distributed algorithms for
topology control of WSN, what would be very interesting given the ad-hoc characteristics of these nets.
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