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Abstract

A fundamental issue in the design of a wireless sensor network is to devise mechanisms to make efficient use of its
energy, and thus, extend its lifetime. The information about the amount of available energy in each part of the network
is called the energy map and can be useful to increase the lifetime of the network. In this paper, we address the problem
of constructing the energy map of a wireless sensor network using prediction-based approach. Simulation results com-
pare the performance of a prediction-based approach with a naive one in which no prediction is used. Results show that
the prediction-based approach outperforms the naive in a variety of parameters. We also investigate the possibility of
sampling the energy information in some nodes in the network in order to diminish the number of energy information
packets. Results show that the use of sampling techniques produce more constant error curves.
� 2004 Published by Elsevier B.V.
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1. Introduction

Wireless sensor networks are those in which
nodes are low-cost sensors that can communicate
with each other in a wireless manner, have limited
computing capability, and memory and operate
with limited battery power. These sensors can pro-
duce a measurable response to changes in physical
conditions, such as temperature or magnetic field.
UNC 36
37
38
39

1570-8705/$ - see front matter � 2004 Published by Elsevier B.V.
doi:10.1016/j.adhoc.2004.07.008

* Corresponding author. Tel.: +55 31 3499 5865; fax: +55 31
3499 5858.

E-mail address: raquel@dcc.ufmg.br (R.A.F. Mini).
The main goal of such networks is to perform dis-
tributed sensing tasks, particularly for applications
like environmental monitoring, smart spaces and
medical systems. These networks form a new kind
of ad hoc networks with a new set of characteris-
tics and challenges.

Unlike conventional wireless ad hoc networks,
a wireless sensor network potentially has hundreds
to thousands of nodes [11]. Sensors have to oper-
ate in noisy environments and higher densities
are required to achieve a good sensing resolution.
Therefore, in a sensor network, scalability is a cru-
cial factor. Different from nodes of a customary
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ad hoc network, sensors are generally stationary
after deployment. Although nodes are static, these
networks still have dynamic network topology.
During periods of low activity, the network may
enter a dormant state in which many nodes go to
sleep to conserve energy. Also, nodes go out of
service when the energy of the battery runs out
or when a destructive event takes place [7]. An-
other characteristic of these networks is that sen-
sors have limited resources, such as limited
computing capability, memory and energy sup-
plies, and they must balance these restricted re-
sources to increase the lifetime of the network. In
addition, sensors will be battery powered and it
is often very difficult to change or recharge batter-
ies for these nodes. Therefore, in sensor networks,
we are interested in prolonging the lifetime of the
network and thus the energy conservation is one
of the most important aspects to be considered in
the design of these networks.

The information about the remaining available
energy in each part of the network is called the en-
ergy map and can aid in prolonging the lifetime of
the network. We can represent the energy map of a
sensor network as a gray level image as depicted in
Fig. 1, in which light shaded areas represent re-
gions with more remaining energy, and regions
short of energy are represented by dark shaded
areas. Using the energy map, a user may be able
to determine if any part of the network is about
UNCORRE 100
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to suffer system failures in near future due to de-
pleted energy [13]. The knowledge of low-energy
areas can aid in incremental deployment of sensors
because additional sensors can be placed selec-
tively on those regions short of resources. The
choice of the best location for the monitoring node
can be made also based on the energy map. A
monitoring node is a special node responsible for
collecting information from sensor nodes. We
know that nodes near the monitoring node proba-
bly will spend more energy because they are used
more frequently to relay packets to the monitoring
node. Therefore, if we move the monitoring node
to areas with more remaining energy, we could
prolong the lifetime of the network.

A routing algorithm can make a better use of
the energy reserves if it chooses routes that use
nodes with more residual energy. The protocol
proposed in [5] is an example of a routing protocol
that could take advantage of the energy map. In
that work, it is described the trajectory based for-
warding protocol that is a new forwarding algo-
rithm suitable for routing packets along a
predefined curve. The idea is to embed the trajec-
tory in each packet, and let the intermediate nodes
make the forwarding decisions based on their dis-
tances from the desired trajectory. If this protocol
had the information about the energy map, the
trajectory could be planned in order to pass
through regions with more energy, thus preserving
or avoiding regions of the network with small re-
serves. Again, the goal here is to make better use
of the energy reserves to increase the lifetime of
the network.

Other possible applications that could take
advantage of the energy map are reconfiguration
algorithms, query processing and data fusion. In
fact, it is difficult to think of an application and/
or an algorithm that does not need to use an en-
ergy map. However, the naive approach to con-
struct the energy map, in which each node sends
periodically its available energy to the monitoring
node, would spend so much energy due to commu-
nications that probably the utility of the energy
information will not compensate the amount of
energy spent in this process. For that reason, bet-
ter energy-efficient techniques have to be devised
to construct the energy map.
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In this paper, we focus on proposing mecha-
nisms to predict the energy consumption of a sen-
sor node to construct the energy map of a wireless
sensor network. There are situations in which a
node can predict its energy consumption based
on its own past history. If a sensor can predict effi-
ciently the amount of energy it will dissipate in the
future, it will not be necessary to transmit fre-
quently its available energy. This node can just
send one message with its available energy and
the parameters of the model that describes its en-
ergy dissipation. With this information, the moni-
toring node can update its local information about
the available energy of this node. Clearly the effec-
tiveness of this paradigm depends on the accuracy
with which prediction models can be generated.
We analyze the performance a probabilistic model,
and compare it with a naive approach in which no
prediction is used. Simulation results show that the
use of the prediction-based model decreases the
amount of energy necessary to construct the en-
ergy map of wireless sensor networks. We also
investigate the energy map construction using
sampling techniques in a way that it is not neces-
sary that all nodes send their energy information
to the monitoring node. The energy dissipation
rate of a node that did not send its energy informa-
tion packet is estimated using the information re-
ceived from its neighboring nodes. In situations
in which neighboring nodes spend their energy
similarly, we can save energy sampling the energy
information. Results show that the use of sampling
techniques produce more constant error curves,
and can reduce the number of energy information
packets needed to construct the energy map.

The rest of this paper is organized as follows. In
Section 2, we briefly survey the related work. In
Section 3, we describe an approach to construct
a prediction-based energy map for wireless sensor
networks. In Section 4, we present the energy dis-
sipation used to describe the energy consumption
in a sensor node. In Section 5, the prediction-based
energy map construction is evaluated and com-
pared with the naive approach. In Section 6, we
analyze the possibilities of using sampling tech-
niques to construct the energy map. Finally, in
Section 7, we conclude giving directions for future
work.
TE
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2. Related work

In [1,4,8,9], the authors explore issues related to
the design of sensors to be as energy-efficient as
possible. In particular, the WINS [1,8] and Pico-
Radio [9] projects are seeking ways to integrate
sensing, signal processing, and radio elements onto
a single integrated circuit. The SmartDust project
[4] aims to design millimeter-scale sensing and
communicating nodes.

The energy efficiency is the primary concern in
designing good media access control (MAC) pro-
tocols for the wireless sensor networks. Another
important attribute is scalability with respect to
network size, node density and topology. A good
MAC protocol should easily accommodate such
network changes [12]. In addition, a lot of en-
ergy-aware routing schemes have been proposed
for wireless sensor networks. Directed diffusion,
proposed in [3], is a new paradigm for communica-
tion between sensor nodes. In this paradigm, the
data are named using attribute-value pairs and
data aggregation techniques are used to dynami-
cally select the best path for the packets. This ena-
bles diffusion to achieve energy savings.

The work proposed in [13] obtains the energy
map of sensor networks by using an aggregation-
based approach. A sensor node only needs to re-
port its local energy information when there is a
significant energy level drop compared to the last
time the node reported it. Energy information of
neighbor nodes with similar available energy are
aggregated to decrease the number of packets in
the network. In [13], each node sends to the mon-
itoring node only its available energy, whereas in
our work each node sends also the parameters of
a model that tries to predict the energy consump-
tion in the near future. With these parameters,
the monitoring node can update locally its infor-
mation about the current available energy at each
node, decreasing the number of energy informa-
tion packets in the network.
3. Prediction-based energy map

As described earlier, the knowledge about the
amount of available energy in each part of the net-
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work is an important information for sensor net-
works. A naive solution to construct the energy
map is to program each node to send periodically
its energy level to the monitoring node. As a sensor
network may have lots of nodes with limited re-
sources, the amount of energy spent by this ap-
proach is prohibitive. For that reason, better
energy-efficient techniques have to be designed to
gather the information about the available energy
in each part of a sensor network.

In this work, we discuss the possibilities of con-
structing the energy map using a prediction-based
approach. Basically, each node sends to the moni-
toring node the parameters of the model that de-
scribes its energy drop and the monitoring node
uses this information to update locally the infor-
mation about the available energy in each node.
The motivation that guided us to this work is that
if a node is able to predict the amount of energy it
will spend, it can send this information to the mon-
itoring node and no more energy information will
be sent during the period that the model describes
satisfactorily the energy dissipation. Thus, if a
node can efficiently predict the amount of energy
it will dissipate in the future time, we can save en-
ergy in the process of constructing the energy map
of a sensor network.

In order to predict the dissipated energy, we
studied a probabilistic model based on Markov
chains. In this model, each sensor node can be
modeled by a Markov chain. In this case, the node
operation modes are represented by the states of a
Markov chain and, if a sensor node has M opera-
tion modes, it is modeled by a Markov chain with
M states. Using this model, at each time the node
is in state i, there is some fixed probability, Pij,
that, in the next time-step, 1 it will be at state j.
This probability can be represented by
Pij = P{Xm+1 = jjXm = i}. We can also define the
n-step transition probability, P ðnÞ

ij , that a node cur-
rently in state i will be in state j after n additional
transitions [10]: P ðnÞ

ij ¼
PM

k¼1P
ðrÞ
ik P

ðn�rÞ
kj , for any va-

lue of 0 < r < n.
UN

1 A time-step is a small amount of time. We suppose that all
state transitions occur at the beginning of any time-step.
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With the knowledge of probabilities P ðnÞ
ij for all

nodes and the initial state of each node, it is possi-
ble to estimate some information about the net-
work that can be useful in many tasks. In this
work, we will use these probabilities to predict
the energy drop of a sensor node. The first step
to make this prediction is to calculate for how
many time-steps a node will be in state s in the next
T time-steps. If the node is in state i, the number of
time-steps a node will stay in the state s can be cal-
culated by:

PT
t¼1P

ðtÞ
is . Also, if Es is the amount of

energy dissipated by a node that remains one
time-step in state s, and the node is currently in
state i, then the expected amount of energy spent
in the next T times, ET(i), is:

ET ðiÞ ¼
XM
s¼1

XT
t¼1

P ðtÞ
is

 !
� Es: ð1Þ

Using the value ET(i), each node can calculate
its energy dissipation rate (DE ) for the next T
time-steps. Each node then sends its available en-
ergy and its DE to the monitoring node. The mon-
itoring node maintains an estimation for the
dissipated energy at each node by decreasing the
value DE periodically for the amount of remaining
energy of each node. The better the estimation the
node can do, the fewer the number of messages
necessary to obtain the energy information and,
thus, the fewer the amount of energy spent in the
process of getting the energy map.

In this work, each node locally constructs its
own transition probability matrix based only on
its past history. In this case, Pij will be the number
of times a node was in state i and went to state j
divided by the total number of time-steps the node
was in state i. With this matrix, each node uses Eq.
(1) to find its energy dissipation rate. If the predic-
tion is good, this approach can save energy com-
pared with the naive solution, because an energy
information packet is not transmitted while the en-
ergy dissipation rate describes satisfactorily the en-
ergy drop in this node. In Section 5.4, we discuss
the computational cost of this approach.
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4. Energy dissipation model

When simulation is used to analyze the per-
formance of the energy map construction or any
other energy related problem, we have to know
how the energy dissipation happens in sensor
nodes. To this end, in this work, we use the
state-based energy dissipation model (SEDM) to
model the energy drop in sensor nodes.

In the SEDM, nodes have various operation
modes with different levels of activation and, thus,
different levels of energy consumption. In this
model, each node has four operation modes: mode
1: sensing off and radio off; mode 2: sensing on and
radio off; mode 3: sensing on and radio receiving;
mode 4: sensing on and radio transmitting. The
transitions between these modes are described by
the diagram of Fig. 2. In that diagram, the opera-
tion modes are represented by states 1, 2, 3 and 4.
In addition, it was necessary to represent more two
states 2 0 and 3 0. The state i 0 also represents the
operation mode i. The only difference is that when
a node goes to state i, it always starts a timer,
UNCORREC
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

1 2 3 4

3’

Is There 
Any Event?

Routing?

Turn On
Radio?

Receiving?

YES

YES

YES

YES

NO

NO

Timer Timer

Sleep?

2’

NO

NO

NO

YES

sleep-time sleep-time

Time out Time out or 
there is 
an event

Fig. 2. Diagram of the state-based energy dissipation model.
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whereas in state i 0, it verifies if is there any event
for it. In terms of energy consumption, state i is ex-
actly the same as state i 0. However, the behaviors
of states i and i 0 are different.

The diagram of Fig. 2 shows the ‘‘commands’’
performed along the path (transition) between
states. It means that whenever a node changes its
current state it performs tests and actions until
the new state is reached. The tests are: ‘‘rout-
ing’’––checks whether a message has to be routed;
‘‘sleep’’––determines whether the node will sleep
or not; ‘‘is there any event’’––determines whether
a new sensing event is present; ‘‘turn on radio’’––
determines whether the radio must be turned on
or not; and ‘‘receiving’’––determines whether the
radio must receive or transmit. ‘‘Timer’’ is an ac-
tion that starts a timer. The outcome of each test
depends on a probabilistic parameter associated
with the test. These transitions try to capture the
behavior of a sensor node, specially in terms of en-
ergy consumption.

It is important to point out that the tests are
tied to the events. Clearly, the outcome of the test
‘‘is there any event’’ is always yes when an event is
detected, and no otherwise. The ‘‘routing’’ test is
yes when the node has to route some sensed infor-
mation that happened in other part of the sensor
field. Thus, this test is also influenced by the
events. The ‘‘receiving’’ test depends also on the
characteristics of the event. Its value is influenced
by the degree of cooperation needed by the appli-
cation. The ‘‘sensing’’ test is called only if there is
no event in the area of the node. If no event hap-
pens, this test will depend on the degree of cover-
age needed by the application. The greater the
value of sleep-prob, the smaller the coverage.

In the SEDM, two types of arrival models are
simulated. In the first one, the event arrival is
modeled by a Poisson process with parameter k.
This process is appropriate to model events that
happen randomly and independently from each
other. In the second model, the event arrival is
modeled by a Pareto distribution. This distribution
has a heavy-tailed property that implies that small
occurrences are extremely common, whereas large
instances represent very few occurrences. When a
Pareto distribution is used to simulate the inter-ar-
rival time of the events, they will happen in bursts.
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This is because most of the inter-arrival time will
be small, meaning that we have lots of events.
However, the occurrence of large inter-arrival time
cannot be neglected, and thus it is possible to have
long periods of time without any event. The use of
Poisson process and Pareto distribution to model
the event arrival comes from the fact that these
are the most common models used in traffic gener-
ation problems.

When an event arrives, a position (X,Y ) is ran-
domly chosen for it, and its behavior is described
by an event that is static and has a fixed size.
The radius of influence of an event is a random
variable uniformly distributed in [event-radius-
min, event-radius-max] meters, and all nodes within
the circle of influence of an event will be affected
by it. Its duration is uniformly distributed in
[event-duration-min, event-duration-max] seconds.
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5. Simulation results

In this section, we present the simulation results
of the prediction-based approach to construct the
energy map and the naive solution. Section 5.1 de-
scribes the operation of the analyzed approaches.
Section 5.2 analyzes the performance of the ap-
proaches when the number of events is changed.
Finally, Section 5.3 shows the results when we
change the accuracy in which the energy maps
are constructed.

5.1. Basic operation

In order to analyze the performance of the pro-
posed schemes, we implemented the prediction-
based energy maps in the ns-2 simulator [6]. The
MAC protocol used was the default MAC proto-
col of ns-2. It is a simplified version of the
802.11 protocol. We use no particular routing
algorithm, but analyze the effect of the routing
process. The energy information packet was rou-
ted to the monitoring node using an aggregation
tree in which the monitoring node is the root. In
fact, the operating modes of a node were defined
based on the Berkeley�s weC mote information.
The protocol stack used in the simulation does
not influence these values.
TE
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We implemented the Markov chain, in which
each node sends periodically to the monitoring
node its available energy, and its predicted energy
consumption rate, and compare it with the naive
one in which each node sends periodically to the
monitoring node only its available energy.

In this work, we consider a sensor network with
static and homogeneous nodes, replacement of
battery is unfeasible or impossible, and there is
only one static monitoring node with plenty of en-
ergy. Nodes are deployed randomly forming a
high-density network in a flat topology. Events
are static and their duration and radius of influ-
ence are randomly chosen. We simulate an event-
driven network in which sensors report informa-
tion only if an event of interest occurs. In this case,
the monitoring node is interested only in the
occurrence of a specific event or set of events.
The communication model among sensors is coop-
erative in the sense that is beyond the relay func-
tion needed for routing, and sensors
communicate with each other to disseminate infor-
mation related to the event. Besides, we used the
energy dissipation model presented in Section 4.

The accuracy required or the maximum error
acceptable in the energy map is controlled by the
parameter threshold. For instance, if its value is
3%, a node will send another energy information
to the monitoring node only when the error be-
tween the energy value predicted by the monitor-
ing node and the correct value is greater than
3%. Each node can locally determine this error
by just keeping the parameters of the last predic-
tion sent to the monitoring node. The parameter
threshold is used in both approaches to construct
the energy map. Thus, even in the naive solution,
another energy information packet is sent when
the error is greater than the parameter threshold.
Thus, in the naive approach, the threshold means
the drop in the last energy value sent to the mon-
itoring node.

In our simulations, the values of power con-
sumption for each state were calculated based on
information presented in [2]: Mode 1: 28.50lW,
Mode 2: 38.72mW, Mode 3: 52.20mW and Mode
4: 74.70mW. These values will be used throughout
all simulations.
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Default values used in simulations

Parameters Value

Number of nodes 100
Initial energy 100J
Communication range 15m
Sensor field size 50 · 50m2

threshold 3%
event-duration-min 5s
event-duration-max 50s
event-radius-min 5m
event-radius-max 15m
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The numerical values chosen for the base case
of our simulations can be seen in Table 1. Unless
specified otherwise, these values are used in all
simulations in this work. In this scenario, each
node has an average of 23.6 neighbors. The mon-
itoring node is positioned at the center of the field
at position (25,25), all nodes are immobile, and
can communicate with other nodes within their
communication range. We assume that the moni-
toring node knows the initial energy at each sen-
sor. Before a node sends its first energy
information packet, the monitoring node assumes
that its power consumption is the average of the
power consumption of all states. We also assume
that nodes spend energy at the rate of 41.41mW
that is the average of power consumption of the
four operation modes. In addition, the results of
all simulations were obtained as an average of 33
runs and they have a 95% confidence level.
UNCORREC
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ROIn Fig. 3a, we plot the correct value of the avail-
able energy in a sensor node and the values found
using the naive and Markov models during a sim-
ulation of 1000s, when the event arrival is modeled
by a Poisson process, and k = 0.001. This figure
shows that making the prediction using the
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Markov model, during 1000s of simulation, this
specific node had to send three energy information
packets (at times 153, 514 and 929s) to keep its en-
ergy information in the monitoring node with an
error no greater than 3% (threshold). Using the na-
ive approach, the node sent eight packets (at times
133, 288, 399, 517, 616, 738, 883 and 985s) to keep
its error smaller than 3%. It is important to point
out that both approaches use the parameter thresh-
old to decide when a new energy information pack-
et has to be sent. Fig. 3b–d, shows what happens in
the same sensor node when we change the number
of events in the network. In Fig. 4, we plot the
number of energy information packets this node
had to send in simulations of Fig. 3. We can see
that the number of packets sent when using the
prediction-based model is less than when using
the naive approach.

5.2. Changing the number of events

In this section, we analyze the performance of
the energy map construction when we change the
number of events in the network. Firstly, we use
a Poisson process to model the event arrival, and
the value of parameter k is changed. Secondly, a
Pareto distribution is used, and the parameter a
is modified. In Fig. 5, we show the average number
of events generated when parameters k and a are
changed.

Using the Poisson process to describe the event
arrival, we executed the two approaches in the
same scenario described above, during 1000s of
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ergy information packets that each node had to
send to the monitoring node to construct an en-
ergy map with an error no greater than 3%. We
can see that, for all values of k, the naive spends
more energy information packets than the predic-
tion-based approach. In addition, when the net-
work becomes more active, the difference
between the number of packets required by the na-
ive and by the prediction-based approach is larger,
meaning that the Markov is more scalable in rela-
tion to the number of events in the network than
the naive solution.

Nevertheless, the graph of Fig. 6 is not a fair
way of comparing the two approaches because
when a node, running the naive algorithm, has to
send an energy information packet, the size of
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the extra information required is only 2 bytes (its
available energy) and, in the Markov algorithm,
the overhead is of 4 bytes (its available energy
and its current power consumption). In order to
UNCORREC

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 N
um

be
r 

of
 B

yt
es

Lambda

Naive
Markov

Naive
Markov

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 N
um

be
r 

of
 B

yt
es

Lambda

(a) (b

(c) (d

Fig. 7. Average number of bytes for different values of k, threshold =
of 30 bytes, (c) packet header of 60 bytes, (d) packet header of 90 by
PROOF

perform a fair comparison between the two ap-
proaches, we have to analyze the average number
of bytes that each node has to send when running
the naive and Markov algorithms. Thus, the met-
ric used to define energy efficiency will be the num-
ber of bytes transmitted. Fig. 7a compares the
average number of bytes that each node had to
send to the monitoring node without taking into
account the overhead of the packet header. In this
situation, we use piggybacking to send the energy
information. We can see that the number of bytes
that the naive has to send is even larger than the
number sent by the naive approach.

In Fig. 7b, we plot the total number of bytes
each node had to send considering that the packet
header is of size 30 bytes. In this situation, each
time a node has to send its energy information, it
will send 32 bytes (30 of header and 2 of payload)
in the naive algorithm, and 34 bytes (30 of header
TE
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and 4 of payload) in the Markov. We can see that,
in this case, the Markov is still the best of the two.
Fig. 7c and d shows what happens when the packet
header is of size 60 and 90 bytes, respectively. In all
situations, the Markov approach is still better than
the naive for all values of packet size.

In the next simulations, we use the Pareto distri-
bution to describe the behavior of the event arrival
in the network. Fig. 8 shows the average number
of energy information packets each node had to
send to the monitoring node. In Fig. 9 we analyze
the number of bytes transmitted by each approach.

We can observe that the results of the Pareto
distribution are similar to the Poisson process.
Observing these graphs and the average number
of events generated in each model (Fig. 5), we
can say that the event arrival model does not influ-
ence the performance of the prediction-based en-
ergy map construction. In fact, a uniformly
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and probably will be more observed in long time
simulations.

Notice that the prediction approach has a better
behavior when the number of events is big or
small. The worst case of this approach happens
for medium values of number of events. Using
the Poisson model, the worst case for the Markov
is k = 0.2, and using Pareto, the worst is when
a = 1.4. This means that the fact of having more
events does not make the problem of prediction
more difficult. The more difficult situations for
the prediction approach happens when there is a
medium number of events. In the naive approach,
the spent energy is proportional to the number of
events since a node will have to send energy infor-
mation packets more often to the monitoring
node. Thus, the prediction-based approach scales
well when the number of events increases or, the
power of making prediction is improved when
the activity of the network increases.

5.3. Changing the energy map precision

In order to analyze the performance of the ap-
proaches in situations where it is necessary an en-
ergy map with a very low error (small threshold),
and also when we can tolerate a greater error
(big threshold), we changed the value of the param-
eter threshold. We ran the naive and Markov algo-
rithms for 100 nodes in the same scenario
described above, using a Poisson process to model
the event arrival. In these simulations, we analyze
the worst case for the Markov model that is when
the value of k is 0.2.

Fig. 10 shows the average number of energy
information packets that each node had to send
to the monitoring node, during a simulation of
1000s, to construct an energy map with an error
no greater than the corresponding threshold. We
can see that, the Markov approach is better than
the naive for all values of threshold. Even when
we compare the number of bytes instead of the
number of packets, the Markov is better than the
naive solution. This comparison is shown in Fig.
11.

Fig. 11a compares the average number of bytes
that each node had to send to the monitoring node
when piggybacking is used to send the energy
TE
D PRinformation. Fig. 11b–d, show the average number

of bytes when the packet header has 30, 60 and 90
bytes, respectively. We can see that, for all values
of threshold analyzed, the Markov model was
more energy-efficient than the naive. Recall that
results shown in this section represent the worst
case for the Markov model. For all other values
of k, the difference, in terms of energy consump-
tion, between this model and the naive is even
higher.

5.4. Computational cost of the Markov model

In this section, we analyze the number of oper-
ations executed by each sensor node in order to
construct the energy map using the Markov mod-
el. To construct the prediction-based energy map,
each node has to maintain its own probability ma-
trix. This matrix is updated at each time-step of the
simulation to keep track of its operation modes.
Besides, at each time-step the node verifies if the
error in the energy information is greater than
the parameter threshold. The number of sums/sub-
tractions, multiplications/divisions, comparisons
and assignments performed to execute these tasks
is 3, 2, 1 and 3, respectively.

When the error in the energy information
reaches the parameter threshold, another energy
information packet is sent. In this case, a new va-
lue of ET(i) has to be calculated. The total number
of operations executed in this calculation depends
on the value of T and on the number of energy
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Fig. 11. Average number of bytes for different values of threshold, k = 0.2. (a) Using piggybacking to send data, (b) packet header of
30 bytes, (c) packet header of 60 bytes, (d) packet header of 90 bytes.
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used T = 5. Table 2 shows the average number
of operations executed at each time-step of simula-
tion for some values of T. In the analysis of the
best and worst cases, we use the simulation results
presented in Section 5.2. In the best case, we con-
sider that only one energy information packet is
sent during 1000s of simulation. In the calculation
of the worst case scenario, we use the results of
Figs. 6 and 8. These results show that, in the worst
case, the Markov prediction sends less than four
energy information packets during 1000s of simu-
lation. Thus, the best case was obtained consider-
ing that an energy information packet is sent
during 1000s of simulation and, in the worst case,
four energy information packets are sent during
the same amount of time.
U 683
6. Energy map construction using sampling tech-

nique

In this section, we analyze the use of sampling
techniques to construct the energy map. In some
sensing applications, neighboring nodes tend to
spend their energy similarly. In such situations,
we can use sampling techniques in a way that it
is not necessary that all nodes send their energy
information to the monitoring node. The energy
dissipation rate of a node that did not send its en-
ergy information packet is estimated using the
information received from its neighboring nodes.
Simulation results compare the performance of a
sampling approach with the Markov model pre-
sented in Section 3. Results show that the use of
sampling techniques produce more constant error
curves, and that these approaches can reduce the
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Average number of operations performed at each time-step of simulation

T Scenario Operations Comparisons Assignments

+ � · /

1 Best case (N = 1) 3.0 2.0 1.0 3.0
Worst case (N = 4) 3.0 2.0 1.0 3.1

5 Best case (N = 1) 3.2 2.1 1.1 3.1
Worst case (N = 4) 3.8 2.3 1.5 3.6

10 Best case (N = 1) 3.4 2.2 1.3 3.3
Worst case (N = 4) 4.7 2.6 2.1 4.3

50 Best case (N = 1) 5.2 2.8 2.5 4.7
Worst case (N = 4) 11.9 5.2 7.1 9.7
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number of energy information packets needed to
construct the energy map.

This section is organized as follows. Section 6.1
presents a sampling model used to determine when
each node will send its energy information packet,
and how the energy consumption rate of a node
that did not send its energy information is esti-
mated by the monitoring node. Section 6.2 pre-
sents simulation results that compare the
sampling technique proposed in this section with
the original Markov model.

6.1. Sampling model

In the original Markov model, when the error
between the energy in a sensor node and the corre-
sponding value in the monitoring node is greater
than a threshold, an energy information packet is
always sent to the monitoring node. We define
the sampling model in such a way that, when the
error reaches the value of threshold, an energy
information packet is sent with probability p.
Using this idea, we can consider the original Mar-
kov a special case of the sampling model in which
the value of p is always 1.

The choice of the parameter threshold has to be
done locally without any communication between
sensor nodes. The value of p can be defined stati-
cally or dynamically. In both cases, a constant d,
that represents the sampling degree, is defined.
This constant determines the initial value of prob-
ability p. In the static sampling, p is always equals
TE
D PRto d during all simulation. In the dynamic sam-

pling, its value increases whenever the error
reaches the threshold and no energy packet is sent.
Thus, the larger the error, the larger the value of p
and, consequently, the larger the probability of a
node to send its energy information packet. To this
end, we define probability p according to the fol-
lowing equation:

p ¼ d þ ð1 � dÞ � 1 � k
k þ n

� �
ð2Þ

where k determines the speed that probability p

reaches 1. For small values of k, p reaches asymp-
totically 1 faster. Furthermore, n is the number of
times the error reached the threshold. Notice that
the updating process of p is memory-less. When
a new energy information packet is sent, n goes
to zero and p is restored to its initial value (the va-
lue of d as mentioned above). Fig. 12 illustrates the
value of p for different values of k when d = 0.4.

The sampling technique described in Eq. (2)
diminishes the number of packets used in the
map construction, and increases its error. To min-
imize the error, the monitoring node has to esti-
mate the energy consumption rate of nodes that
did not send their energy information packet. We
suppose that a node and its neighbors spend en-
ergy in a similar way. When the monitoring node
receives an energy packet, it uses interpolation to
update the energy consumption rate of its neigh-
boring nodes of the received packet. This update
considers the last consumption rate sent by the
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node, named cnode, and the average energy con-
sumption rate of its neighboring nodes that sent
their energy information packet after this node
sent the packet, named cneighbors. The trade-off be-
tween this two pieces of information is defined by
Eq. (3) that determines the weight of the energy
consumption rate of the neighboring nodes. In this
equation, ninterpolations represents the number of
interpolations executed for the node.

pneighbors ¼ð1�dÞþd� 1� k
kþninterpolations

� �
ð3Þ

Therefore, when the monitoring node receives
an energy information packet, it updates the con-
sumption rate of all neighboring nodes of this
packet. This new consumption rate, named cestimated,
is defined by Eq. (4).
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cestimated ¼ cneighbors �pneighbors þcnode �ð1�pneighborsÞ ð4Þ

The goal of Eq. (4) is to update the node con-
sumption rate with a more recent information re-
ceived from its neighbors. The use of the value
ninterpolations in Eq. (3) is justified because, as the
node information is estimated several times in
the monitoring node, the last energy packet infor-
mation values loose significance. Consequently,
the more recently the energy packet is, the
more expressive its value in the map. The value
of pneighbors depends also on the sampling degree.
The smaller this value is, the greater the value of
pneighbors. It is important to point out that Eq. (3)
is only used in the dynamic approach. In the static
model, the same equation is pneighbors = (1�d).

In some situations, when sampling is used, the
error from the point of view of the node is smaller
than from the point of view of the monitoring
node. This happens when an energy information
packet has to be sent and, due to the sampling
probability p, it is not. In this case, from the point
of view of the node, the error is zero and the value
of p is increased, whereas from the point of view of
the monitoring node the error continues increas-
ing. However, the total error is evaluated by using
the point of view of the monitoring node.

6.2. Simulation results

We implemented the energy map construction
using sampling in the ns-2 simulator [6] and com-
pared it with the original Markov model. Unless
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Table 3
Total number of energy packets sent using the static and
dynamic sampling approaches

Model Static approach Dynamic approach

Sampling (d = 0.2) 66 122
Sampling (d = 0.4) 132 162
Sampling (d = 0.6) 189 204
Sampling (d = 0.8) 248 255

Markov 303
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specified otherwise, the default values used in
simulations of this section are the same defined
in Section 5.1. Besides, in all simulations of this
section, the Poisson process with k = 0.2 is used
to model the event arrival.

Our goal, in the first simulation, is to analyze
the total number of energy information packets
sent using the original Markov and the sampling
technique for the following values of d: 0.2, 0.4,
0.6 and 0.8. Fig. 13 shows these results for the sta-
tic and dynamic sampling models. As it was ex-
pected, in all simulations, the total number of
energy information packets sent by sampling tech-
niques was less than the amount sent by the Mar-
kov. We can observe that, the smaller the sampling
degree is, the lower the total number of energy
packets sent. In the static approach, this value is
probabilistically equals to the sampling degree
multiplied by the total number of energy packets
sent by Markov. In the dynamic approach, the
UNCORREC
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Fig. 14. Error using the static and dynamic sampling appro
F

number of packets sent is greater than this multi-
plication, because the probability p of sending a
packet increases whenever the node reaches the va-
lue of threshold, and its energy information is not
sent. The speed of this increase is determined by
the value of k. In all simulations, we use k = 1. Ta-
ble 3 shows the number of energy information
packets sent at the end of simulation for both
models.
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Fig. 14 shows the average error in percentage
for a simulation of 1000s. We verify that the Mar-
kov has the smallest error, followed by the dy-
namic and static approaches, respectively. This is
due to the total number of energy information
packets sent in each approach. An interesting
point when comparing Figs. 13 and 14 is that the
dynamic approach has a better performance than
the static one. For instance, the dynamic model
using d = 0.2 sends 122 packets, while the static
using d = 0.4 sends 132. However, the errors of
both approaches are very similar. When we com-
pare the dynamic model using d = 0.4 and
d = 0.6 with the static one using d = 0.6 and
d = 0.8, respectively, we verify that the former
sends less energy packets, and has smaller errors.
The advantage of the dynamic model is due to
the increase in the probability p when a node do
not send an energy packet.
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Fig. 15. The influence of the interpolation phase in sampling te
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Our next goal is to compare sampling tech-
niques with and without the interpolation defined
in Eq. (4). Fig. 15 shows that the greater the sam-
pling degree, the smaller the advantage of using
the interpolation phase. This is expected because
when the sampling degree increases, the number
of energy information packets received by the
monitoring node also increases. As the interpola-
tion does not have any influence in the sampling
phase, the number of energy information packets
is exactly the same in both curves of the same fig-
ure. It is important to point out that, in our simu-
lation model, failures are not considered.
Therefore, if failures are considered, the interpola-
tion phase can improve the map quality because
lost information can be estimated from informa-
tion of neighboring nodes.

As observed in Section 5.3, one way to diminish
the number of energy information packets needed
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to construct the map is to increase the value of the
parameter threshold. Our next goal is to compare
the Markov using a large value of threshold with
sampling techniques. When we increase the value
of the parameter threshold in the Markov model,
all nodes send their energy information less fre-
quently. In sampling models, few nodes send their
energy information more frequently. Fig. 16 com-
pares these two approaches. In Fig. 16a and b, we
compare the Markov using threshold = 5% with
the sampling model using threshold = 3% and
d = 0.5 and 0.6. Fig. 16c and d shows the Markov
with threshold = 7% and the sampling with thresh-
old = 3% and d = 0.3 and 0.4. Fig. 16a and c
shows the total number of energy packets sent dur-
ing all simulation, and Fig. 16b and d shows the
mean error in percentage. We can see that, for sim-
ilar number of energy packets, the error of the
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F

sampling model is smaller than the one of the Mar-
kov. Fig. 16a and c shows that, at the beginning of
simulation, the number of packets sent by Markov
is smaller, and, thus, its error is bigger than the er-
ror of sampling models. This happens because the
value of threshold delays the sending of the energy
packets in the Markov model. Therefore, the sam-
pling model produces more constant error curves
than the original Markov. This is the greatest
advantage of sampling models over the original
Markov.
RO7. Conclusions and future directions

In this work, we have studied the problem of
constructing the energy map of wireless sensor net-
works using prediction-based approach. In this
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model, each node tries to estimate the amount of
energy it will spend in the near future and it sends
this information, along with its available energy,
to the monitoring node. Simulations were con-
ducted in order to compare the performance of a
prediction-based approach with a naive one, in
which only the available energy is sent to the mon-
itoring node. Simulation results indicate that the
prediction-based approach analyzed is more en-
ergy-efficient than the naive solution, and also that
this approach is more scalable with respect to the
number of sensing events. We also analyzed the
use of a sampling technique to reduce the number
of packets needed to construct the map. Results
showed that its most important advantage is to
produce more constant error curves.

The next step is to apply the energy map in
problems such as the trajectory based forwarding
protocol proposed in [5]. The information pre-
sented in the energy map could be used to plan
the trajectory according to energy reserves, pre-
serving or avoiding regions with small energy re-
serves. We also plan to study the construction of
localized energy maps. In all energy map construc-
tions presented in this work, the map of the entire
network was constructed in the monitoring node.
However, in some situations, it is enough to know
the energy information of a neighboring region.
An energy map that gives information about a re-
gion surrounding the node is named localized en-
ergy map. This localized energy information can
be useful to improve the energy efficiency of other
algorithms such as routing protocols. The con-
struction of localized energy map is a promising
extension of this work.
974
975
976
977
978
979
980
981
982
983
984
985
986
NCOR

Acknowledgement

This work has been partially supported by
CNPq, Brazil, under process number 55.2111/
2002-3, DARPA under contract number N-
666001-00-1-8953, and a grant from CISCO sys-
tems. We would like to thank the comments and
suggestions of Prof. Narayan Mandayam, Associ-
ate Professor of ECE Department at Rutgers Uni-
U
versity and Associate Director at WINLAB, the
members of both the DATAMAN group of Rut-
gers University and SensorNet at Federal Univer-
sity of Minas Gerais, and also the reviewers who
provided useful comments and helped us to im-
prove the final version of the paper.
TE
D PROOF

References

[1] G. Asada et al., Wireless integrated network sensors: low
power systems on a chip, in: European Solid State Circuits
Conference, The Hague, 1998.

[2] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K.
Pister, System architecture directions for networked sen-
sors, in: Proceedings of the 9th International Conference
on Architectural Support for Programming Languages and
Operating Systems, November 2000.

[3] C. Intanagonwiwat, R. Govindan, D. Estrin, Directed
diffusion: a scalable and robust communication paradigm
for sensor networks, in: Proceedings of MOBICOM,
Boston, 2000, pp. 56–67.

[4] J.M. Kahn, R.H. Katz, K.S.J. Pister, Next century
challenges: mobile networking for smart dust, in: Proceed-
ings of MOBICOM, Seattle, 1999, pp. 271–278.

[5] D. Niculescu, B. Nath, Trajectory-based forwarding and
its applications, in: Proceedings of MOBICOM, San
Diego, 2003.

[6] ns2, The network simulator, Available from <http://
www.isi.edu/nsnam/ns/index.html>, 2002.

[7] S. Park, A. Savvides, M.B. Srivastava, SensorSim: a
simulation framework for sensor networks, in: Proceedings
of the 3rd ACM Intl Workshop on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, Boston, 2000,
pp. 104–111.

[8] G.J. Pottie, W.J. Kaiser, Wireless integrated network
sensors, Communications of the ACM 43 (2000) 551–558.

[9] J.M. Rabaey, M. Josie Ammer, J.L. da Silva Jr., D. Patel,
S. Roundy, Picoradio supports ad hoc ultra-low power
wireless networking, IEEE Computer 33 (7) (2000).

[10] S. Ross, A First Course in Probability, fifth ed., Prentice
Hall, 1998.

[11] K. Sohrabi, J. Gao, V. Ailawadhi, G.J. Pottie, Protocols
for self-organization of a wireless sensor network, IEEE
Personal Communications 7 (2000) 16–27.

[12] Alec Woo, David E. Culler, A transmission control scheme
for media access in sensor networks, in: Proceedings of
MOBICOM, Rome, July 2001, pp. 221–235.

[13] Y. Jerry Zhao, R. Govindan, D. Estrin, Residual energy
scans for monitoring wireless sensor networks, in: Pro-
ceedings of WCNC, Orlando, 2002.

http://www.isi.edu/nsnam/ns/index.html
http://www.isi.edu/nsnam/ns/index.html


987

R.A.F. Mini et al. / Ad Hoc Networks xxx (2004) xxx–xxx 19

ADHOC 95 No. of Pages 19, DTD = 5.0.1

13 August 2004; Disk Used
ARTICLE IN PRESS
Raquel A.F. Mini holds a B.Sc., M.Sc.
and Ph.D. in Computer Science from
Federal University of Minas Gerais
(UFMG), Brazil. Currently she is an
Associate Professor of Computer Sci-
ence at PUC Minas, Brazil. Her main
research areas are sensor networks,
distributed algorithms, and mobile
computing.
Max do Val Machado received the B.S.
degree in Computer Science From
Pontifical Catholic University of
Minas Gerais, Brazil in 2002. Cur-
rently, he is a Master�s student in
Computer Science at the Federal Uni-
versity of Minas Gerais, Brazil. His
research interests are algorithms for
wireless sensor networks and mobile
ad hoc networks.
UNCORREC
F

Antonio A.F. Loureiro holds a B.Sc.
and a M.Sc. in Computer Science,
both from the Federal University of
Minas Gerais (UFMG), and a Ph.D.
in Computer Science from the Uni-
versity of British Columbia, Canada.
Currently he is an Associate Professor
of Computer Science at UFMG. His
main research areas are wireless sensor
networks, mobile computing, distrib-
uted algorithms, and network
management.
PROO

Badri Nath is a professor of computer
science at Rutgers University. His
research interests are in the area of
mobile computing and sensor net-
works. As part of his research, he is
developing protocols and services sui-
ted for large scale dense networks. His
current focus is on developing proto-
cols and services for an information
architecture on top of sensor networks.
In particular, he is investigating new
paradigms for routing, localization,
and data management in sensor net-

works. He is also the recipient of the 10 year best paper award
TE
Dat VLDB-2002. He has served on several program committees

of conferences in the area of mobile computing, data manage-
ment and sensor networks. Currently, he serves on the editorial
board of ACM Transactions on Sensor Networks, WINET,
Wireless Communications and Mobile computing, and IEEE
pervasive computing. He has a Ph.D. from the University of
Massachusetts, Amherst.


	Prediction-based energy map for wireless sensor networks
	Introduction
	Related work
	Prediction-based energy map
	Energy dissipation model
	Simulation results
	Basic operation
	Changing the number of events
	Changing the energy map precision
	Computational cost of the Markov model

	Energy map construction using sampling technique
	Sampling model
	Simulation results

	Acknowledgement
	References


