
Semi-Automatic Generation of Monitoring
Applications for Wireless Networks

André Lins∗, Eduardo F. Nakamura∗†, Lincoln S. Rocha‡, Antonio A.F. Loureiro∗,
Claudionor J.N. Coelho Jr.∗

∗Department of Computer Science, Federal University of Minas Gerais, Brazil
Email: {alla,nakamura,loureiro,coelho}@dcc.ufmg.br

†Department of Technological Development, FUCAPI – Research and Technological Innovation Center, Brazil
Email: nakamura@fucapi.br

‡Department of Computer Science and Statistics, Federal University of Piaui, Brazil
Email: lincoln@ufpi.br

Abstract— In this paper we present a new tool called Bean-
Watcher. This tool allows the semi-automatic generation of mon-
itoring and management applications for wireless networks such
as WLANs and WPANs. The architecture of the tool is based on
a component model flexible enough to allow the creation of new
components and the optimization of the components currently
provided. BeanWatcher was designed to offer a development
environment suitable for both expert and beginner users allowing
them to choose the programming language that better fits the
application requirements.

I. I NTRODUCTION

A Wireless Network is a special type of network that uses
radio waves to communicate between nodes. Recent standard
approvals for WLANs – Wireless Local Area Networks (IEEE
802.11), WPANs – Wireless Personal Area Networks (IEEE
802.15 and Bluetooth), and Broadband Wireless Access (IEEE
802.16) [1] allowed users to wirelessly extend their networks
in different scenarios such as schools, enterprises, and indus-
tries. It is estimated that 16 million people used 802.11 in
2001, and this number will grow to 60 million by 2006 [2].

Networks and devices are important development con-
siderations when developing an application for a wireless
environment. On the other hand, if an application will be
used in different wireless networks and portable devices, it is
important to design it in such a way that code can be reused,
and network and hardware requirements be encapsulated, so
its development and maintenance will be easier.

In this paper we will use the following example, depicted
in Fig. 1. Consider a factory equipped with a wireless network
that gathers different types of data from the environment such
as machinery temperature and speed, and power consumption.
A walking employee can receive data from those equipments
through a wireless network interface into a portable device.
The management application running on a portable device
could be based on J2ME [3] or SuperWaba [4] platform. In
this case, a multimedia interface, with graphics, animations
and audio/video stream capability, to exhibit data collected
from different equipments could be provided to support the
network monitoring and management.

The application described above is usually designed to solve
a specific issue, and thus, no model is applied and no code

Fig. 1. A wireless network example.

reuse is foreseen. In this work we present a tool called Bean-
Watcher that aims the code reuse proposing a standardization
to the development of such applications. BeanWatcher allows
the development of management applications in different pro-
gramming languages such as Java, C/C++ and Embedded C.
Our tool generates a management application for a wireless
network in a semi-automatic fashion that takes into account
the main characteristics of both the wireless environment
(e.g., lower bandwidth and higher error rate) and the portable
device (e.g, screen size and computational capacity). These
applications are intended to be run on portable and mobile
devices.

Some commercial tools like LabView [5] and HP VEE [6]
were designed to develop applications to monitor and act on
instruments. However, these tools are proprietary solutions
hardly integrated with other tools and languages. Furthermore,
these tools do not allow the development of applications to
portables devices neither monitoring applications for wire-
less networks. Other related tool is the PECOS Component
Environment [7] that allows the development of monitoring
and actuation applications. Unfortunately, PECOS does not
support remote communication and it was not designed for
applications to portable devices. In BeanWatcher, applications
are modelled and built based on the PECOS component
model. In addition, a communication component (based on
the standard socket API) is provided to allow the application
interaction with other computing devices.

This paper is organized as follows. In Section II we present
the component model used in BeanWatcher. In Section III we



present the tool BeanWatcher discussing its architecture and
use model. Section IV shows how BeanWatcher can be used to
develop applications and new components. Section V presents
our conclusions and future work.

II. COMPONENTMODEL

BeanWatcher adopts the PECOS component model pro-
posed by Genssler et al. [8]. However, BeanWatcher adds a
communication component to allow the monitoring of remote
applications.

A. PECOS Component Model

The PECOS component model aims the design of embedded
systems, more specifically field devices, which are executed
directly by the instruments. PECOS is divided into two sub-
models: structural and execution. Structural sub-model defines
the entities included in the model, their features and proper-
ties. The execution sub-model defines the semantics of the
components execution. An example of this model for a clock
application is depicted in Figures 2 and 3 which will be further
discussed.

1) Structural Sub-Model:There are three main entities in
PECOS structural sub-model: components, ports and connec-
tors. Each component has a semantics and a well-defined
behavior. Components form the model kernel that is used to or-
ganize both data and computation of the generated application.
In the example shown in Fig. 2, the components aredevice,
clock, display, eventloopanddigital display. Ports provide an
interaction mechanism among components. Output ports are
connected to input ports through connectors as illustrated in
Fig. 2, that shows the output portsmsecsandstarted, and input
ports time, time milsecs, draw. Connectors describe a data
sharing relationship between two ports and are represented
by lines connecting the ports.

Device

Clock Display

EventLoop

Digital
Display

msecs
port

time
port

time_msec
port

draw
port

started
port

Fig. 2. PECOS component model for a clock application (structural sub-
model).

Components in PECOS can be primitive and composed.
A primitive component can be passive, active or an event.
Passive components cannot control their execution, and are
used as part of the behavior of other component being executed
synchronously. In Fig. 2, the passive components areclock,

display and digital display. Active components control their
execution which is trigged by a system request. In Fig. 2, the
active components aredeviceand eventloop. Event compo-
nents are similar to active components, but their executions are
triggered by an event. A composite component is built using
connected sub-components, but their internal sub-components
are not visible to the user. In addition, a composite component
must define a scheduling specifying the exact execution order
of its sub-components. In Fig. 2, the composite component is
the device.

Ports can be input, output or input/output ports. Input ports
just receive data from other components. Output ports just send
data to other components. Input/Output ports are bi-directional
receiving and sending data from and to other components.

PECOS also defines properties and a parent component.
Properties are components meta-data such as memory usage
or execution time. The structure of a component generated by
the model is always hierarchical where the top component is
always a composite component (parent).

2) Execution Sub-Model:PECOS provides a sub-model
for the execution of applications, that shows how data are
synchronized among components running in different threads
and describes the their semantics.

Problems of data synchronism may happen in PECOS. For
instance, suppose there are two active components connected
to each other through a port. Both can read and write data
simultaneously by different operations. To solve this problem,
active and event components have a private data space where
they can update unconditionally and periodically a private data
that can be synchronized with a parent component. In Fig. 3
we can see the private data space in thedeviceandeventloop
components.

Clock Digital
Display Display

EventLoop
(active)

Data space

Device
(active)

Data space

Fig. 3. PECOS component model for a clock application (execution sub-
model).

Due to this need for synchronization, active and event
components have two possible behaviors: execution and syn-
chronization. The execution behavior defines the actions per-
formed when the component is executed. The synchronization
behavior specifies how the private data space is synchronized
with the parent component (arrows in Fig. 3). The execution
semantics obeys the following simple rules:

• Execution behavior of a passive component is executed
by a thread of its parent component;



• Synchronization behavior is executed by a thread of its
parent component;

• Active and event components execute their sub-
components into their own behavior using a control
thread;

• Each component has a scheduler for its children.

B. PECOS in BeanWatcher

As mentioned before, BeanWatcher adopts PECOS as its
component model adding a communication component to
support remote monitoring applications for wireless networks.
As an example, consider a wireless network and a temperature
application with three components: one to present the temper-
ature, one to perform data fusion and one for communication,
as depicted in Figures 4 and 5.

ApplComponent
(active)

Thermometer Data Fusion

Communicator

temp
port

data
port

receiver
port

sensing
port

Fig. 4. Using PECOS in BeanWatcher (Structural sub-model).

In the structural sub-model of BeanWatcher, every compo-
nent that monitors data provided by the wireless network (e.g.,
a thermometer) is an active component since it just receives
data that is presented to the user. Also the ApplComponent
is always an active component. Components used as alarm
indicators are event components. Internal components (used
by a parent component) are passive. In Fig. 4, the data fusion
and communicator components are passive. In addition, we
added ashow functionality to the components because the
generated remote applications show raw or pre-processed data
from the wireless network.

The execution sub-model of BeanWatcher does not use the
thread concept. We adopted a pipeline execution, i.e., only
one component can be executed at a time. This is illustrated
in Fig. 5 where ApplComponent executes sequentially its sub-
components.

III. B EANWATCHER TOOL

BeanWatcher is a graphic tool based on components de-
signed to the development of monitoring and management
applications for wireless networks. The tool allows the devel-
opment of applications by a user with limited programming
experience. Furthermore, BeanWatcher allows the generation
of applications for different platforms if the appropriated
component repository is available. In our case study we used

(active)

ThermometerData FusionCommunicator

Fig. 5. Using PECOS in BeanWatcher (Execution sub-model).

a J2ME [3] component repository to develop monitoring
applications for wireless networks to portable devices such
as palms and cell phones.

A. BeanWatcher Architecture

Figure 6 shows the BeanWatcher architecture which has
three different modules: repository, processing and presenta-
tion.

Repository

Presentation

Processing

Wizard Workplace Code
Generation

Component
Behavior

Java J2ME C++
... complete

include use
include when

necessary

when requested

Component Repository

Fig. 6. BeanWatcher architecture.

The repository includes all the components, generated by a
wizard, that can be used to develop the application. For the
sake of flexibility, Beanwatcher allows the addition of several
target languages to the repository, such as Java, C/C++ and
Embedded C. These target languages are associated with the
repository module and enables the creation of applications in
different languages. The repository uses the component model
discussed in Section II.

The presentation module specifies the interface provided by
BeanWatcher to the user and it is composed by the workplace
and the wizard. The workplace is the application building area
and is divided into component edition and code edition. The
component edition allows the user to choose and place the
components according to the application requirements, adding
connectors when two or more components demand it. The
code edition is used to implement the behavior and show the
functionality of the application being created. Furthermore,



it allows the re-implementation of the components in the
application.

The wizard is an important part of the presentation module
that enables the creation of new components extending the
repository. To create a new component, it is necessary to
label the component and specify its ports. However, both the
behavior and show functionalities must be implemented in the
code edition. It is important to mention that when a new target
language is added to the tool, the components currently in the
repository can be replicated by the wizard so the components
can be available in the new language. This is possible because
the wizard stores all the information necessary to create the
components in a XML file. Thus, to add a new language the
user only needs to create a new template for that language
Fig. 7 shows a template for Java.

Fig. 7. Template to create Java applications.

The processing module performs the code generation and
updates the components repository with new behavior im-
plementations. The code generation obeys the application
built by the user on the workplace. To have the complete
application, the behavior of the composite component must
be implemented.

B. Application Development in BeanWatcher

Every application generated by BeanWatcher has a compos-
ite component calledApplComponent, i.e, every component
added to the workplace will be a sub-component ofApplCom-
ponent. To create an application, the user must go through the
three steps: building, implementation and generation.

In the building phase, the user chooses one or more
components to be added to the component edition area in

the workplace. Thus, the added component becomes a sub-
component of theApplComponent. If necessary, a connector
can be added to allow interactions among components.

Once the application is built it is necessary to implement
the behavior and the visualization of theApplComponent.
This is done in the code edition area in the workplace. All
the attributes and methods of this component are generated
automatically. At this point the user can modify the behavior
of the sub-components selecting the desired sub-component
and editing it in the code edition area.

Once the user saves the application, the code of each sub-
component in the component edition area, theApplComponent
and a default presentation code of BeanWatcher is automati-
cally generated. After that, the user can compile and run the
generated application.

IV. U SING BEANWATCHER

In this section is devoted to the use of BeanWatcher. First,
we show how to create a component through the wizard.
Then, we describe how to replicate the repository for a new
target language. At last, an exemple application is built using
BeanWatcher.

The example application monitors the temperature data
provided by a wireless network. As we wanted to perform
data fusion, we will create through the wizard the data fusion
component, which implements the Marzullo function [9]. The
application and the components will be created using J2ME.

Fig. 8. Creating a new component through the wizard.

A. Creating a New Component

Initially, to create the component we need to specify the
interface of the component, i.e., the input and output ports,
the associated data types and the proper dimension. This
task is performed in the wizard interface depicted in Fig. 8.
First, we must specify the author’s name and the component’s
name. Second, the repository file1 should be indicated. Third,

1The repository file contains the specification of all components; it is used
to replicate the repository whenever necessary or desired.



the component’s ports are specified. Finally, the components
are actually created in all target languages available in the
repository.

After the creation of the component, BeanWatcher auto-
matically generated every code that was possible. However,
we must implement the behavior2 of the component, which
in this case is the Marzullo function. This can be done in the
code edition area (Fig. 9).

Fig. 9. Code edition area.

B. Replicating The Repository

The specification of all components in the repository is
stored in a XML file where the tags are used to describe
the interface of a component (Fig. 7). When a new target
language is added, the repository needs to be replicated so all
components can be available in that language. This repository
file is used by BeanWatcher to automatically generate the
code for all components in a desired language. However,
particularities of each component, such as the behavior and
showfunctionalities, still requires implementation.

The replication can be performed in the wizard interface
depicted in Fig. 10. First, we have to choose the new target
language. Then, the location of the repository file must be
specified. Finally, we must indicate the location were the
components will be stored and start the replication. Again,
the implementation of the behavior andshow functionalities
still needs to be implemented in the new target language.

C. Creating an Application

Now that we have all the necessary components the appli-
cation can be built. Initially, we chose the components from
the menu (thermometer, data fusion and communicator). The
thermometer is an active component that shows the tempera-
ture provided by the network equipments. The data fusion is a
passive component based in the Marzullo function. However,
as BeanWatcher allows the optimization of the component

2In the case of graphical components, the user also needs to implement the
showfunctionality.

Fig. 10. Replicating the repository.

behavior, new algorithms can be implemented. The communi-
cator is a passive component that allows the communication
among thesink and sources. These components were added
to the component edition area.

After the addition of the components it is necessary to
connect them. One connector allows the data forwarding from
the communicator to the data fusion component. The other
connector allows the thermometer to receive and show the data
previously fused. The application available in the component
edition area is shown in Fig. 11.

Fig. 11. Workplace.

Once the application is built the next step is the implemen-
tation of the behavior andshowof the ApplComponent. This
is done through the code edition area shown in Fig. 9. Finally,
saving the project we have the application ready. This example
was executed in a simulator included in the J2ME Wireless
Toolkit [3] and the result can be visualized in Fig. 12. Note
that we can add different graphical elements into theshow
method improving the presentation of the application.



(a) Application presen-
tation.

(b) Application wait-
ing for data.

(c) Fused data is pre-
sented to the user.

Fig. 12. Execution of the generated application.

V. CONCLUSIONS ANDFUTURE WORK

BeanWatcher is a powerful tool that adopts a component
model aiming the development of management and monitoring
applications for wireless networks. BeanWatcher was designed
to allow users with limited programming experience to develop
a wide variety of monitoring applications. In addition, it
supports several target languages.

As a future work, we will develop a module to generate
applications based on rules, i.e., if different types of data
are received, the application will automatically choose the
appropriate interface according to a set of rules simplifying
its use. In this case, the application will be composed by a set
of synoptic panels that will be automatically chosen based on
the data received.

ACKNOWLEDGMENT

This work has been partially supported by CNPq, Brazil,
under process 55.2111/2002-3.

REFERENCES

[1] IEEE, “Wireless standards zone. [online] available:
http://standards.ieee.org/wireless/.”

[2] B. Morrissey, “802.11 takes center stage. june, 2002. [online]
available:http://www.80211-planet.com/news/article.php/1355221.”

[3] S. Microsystems, “J2me. [online] available: http://java.sun.com/j2me/,
access: March 2003.”

[4] G. C. Hazan, “Jsuper waba. [online] available:
http://www.superwaba.com.br, access: March 2003.”

[5] N. Instruments, “Labview 6.1. [online] available: http://www.ni.com/,
access: January 2003.”

[6] Agilent, “Vee onelab 6.1. [online] available: http://www.agilent.com/,
access: January 2003.”

[7] Pecosproject, “Composition enviroment. [online] available:
http://www.pecos project.org/software.html, access: January 2003.”

[8] T. Genssler, A. Christoph, B. Schulz, M. Winter, C. M. . Stich, C. Zeidler,
P. Mller, A. Stelter, O. Nierstrasz, S. Ducasse, G. Arevalo, R. Wuyts,
P. Liang, B. Schonhage, and R. van den Born, “Pecos in a nutshell,” The
Pecos Consortium, Tech. Rep., September 2002.

[9] K. Marzullo, “Tolerating failures of continuous-valued sensors,”ACM
Transactions on Computer Systems (TOCS), vol. 8, no. 4, pp. 284–304,
1990.


