Semi-Automatic Generation of Monitoring
Applications for Wireless Networks

André Lins', Eduardo F. Nakamut4, Lincoln S. Roch& Antonio A.F. Loureird,
Claudionor J.N. Coelho Jr.

*Department of Computer Science, Federal University of Minas Gerais, Brazil

Email: {alla,nakamura,loureiro,coelh@dcc.ufmg.br
fDepartment of Technological Development, FUCAPI — Research and Technological Innovation Center, Brazil
Email: nakamura@fucapi.br
iDepartment of Computer Science and Statistics, Federal University of Piaui, Brazil
Email: lincoln@ufpi.br

[Pl =)

Abstract—In this paper we present a new tool called Bean- hermometer Astive
Watcher. This tool allows the semi-automatic generation of mon- I ™ = / Temperatwe:dc,7C |
()]
() . i .

itoring and management applications for wireless networks such
as WLANs and WPANSs. The architecture of the tool is based on
a component model flexible enough to allow the creation of new
components and the optimization of the components currently
provided. BeanWatcher was designed to offer a development
environment suitable for both expert and beginner users allowing
them to choose the programming language that better fits the
application requirements. Fig. 1. A wireless network example.

I. INTRODUCTION

A Wireless Network is a special type of network that uses))
radio waves to communicate between nodes. Recent stand&¢F€ IS foreseen. In this work we present a tool called Bean-
approvals for WLANSs — Wireless Local Area Networks (|EEEWatcher that aims the code reuse proposing a standardization
802.11), WPANSs — Wireless Personal Area Networks (IEE the development of such applications. BeanWatcher allows
802.15 and Bluetooth), and Broadband Wireless Access (IEEIE development of management applications in different pro-
802.16) [1] allowed users to wirelessly extend their networi@amming languages such as Java, C/C++ and Embedded C.
in different scenarios such as schools, enterprises, and indg& 100l generates a management application for a wireless

tries. It is estimated that 16 million people used 802.11 ilp,etwork in a semi-automatic fashion that takes into account
2001, and this number will grow to 60 million by 2006 [2]. the main characteristics of both the wireless environment

Networks and devices are important development Copp_.g.., lower bandwidth_ and higher error rate) and thg portable
siderations when developing an application for a wirele§§vice (€.g, screen size and computational capacity). These
environment. On the other hand, if an application will b@pp_llcanons are intended to be run on portable and mobile
used in different wireless networks and portable devices, it$§Vvices.
important to design it in such a way that code can be reusedSome commercial tools like LabView [5] and HP VEE [6]
and network and hardware requirements be encapsulatedWése designed to develop applications to monitor and act on
its development and maintenance will be easier. instruments. However, these tools are proprietary solutions

In this paper we will use the following example, depicte#tardly integrated with other tools and languages. Furthermore,
in Fig. 1. Consider a factory equipped with a wireless netwotkese tools do not allow the development of applications to
that gathers different types of data from the environment suRrtables devices neither monitoring applications for wire-
as machinery temperature and speed, and power Consumpﬁ@fsﬁ networks. Other related tool is the PECOS Component
A walking employee can receive data from those equipmeri&gvironment [7] that allows the development of monitoring
through a wireless network interface into a portable devicend actuation applications. Unfortunately, PECOS does not
The management application running on a portable deviggpport remote communication and it was not designed for
could be based on J2ME [3] or SuperWaba [4] platform. I[applications to portable devices. In BeanWatcher, applications
this case, a multimedia interface, with graphics, animatiodée modelled and built based on the PECOS component
and audio/video stream capability, to exhibit data collectéfiodel. In addition, a communication component (based on
from different equipments could be provided to support tHEe standard socket API) is provided to allow the application
network monitoring and management. interaction with other computing devices.

The application described above is usually designed to solveThis paper is organized as follows. In Section Il we present
a specific issue, and thus, no model is applied and no cdtie component model used in BeanWatcher. In Section Ill we

Back aut

present the tool BeanWatcher discussing its architecture aligplay and digital display Active components control their
use model. Section IV shows how BeanWatcher can be useakecution which is trigged by a system request. In Fig. 2, the
develop applications and new components. Section V preseatsive components ardevice and eventloop Event compo-
our conclusions and future work. nents are similar to active components, but their executions are
triggered by an event. A composite component is built using
connected sub-components, but their internal sub-components
BeanWatcher adopts the PECOS component model pege not visible to the user. In addition, a composite component
posed by Genssler et al. [8]. However, BeanWatcher addsnast define a scheduling specifying the exact execution order
communication component to allow the monitoring of remotgf its sub-components. In Fig. 2, the composite component is
applications. the device
A. PECOS Component Model Ports can be input, output or input/output ports. Input ports

,) just receive data from other components. Output ports just send
The PECOS component model aims the design of embedqgd, 14 other components. Input/Output ports are bi-directional

systems, more_specifically field devi(_:es,_ v_vhich_ are executp&eiving and sending data from and to other components.
directly by the instruments. PECOS is divided into two sub- PECOS also defines properties and a parent component.

models: structural and execution. Structural sub-model deﬁrlgt%perties are components meta-data such as memory usage
the entities included in the model, their features and prop

i Th " b-model defi h i ¢ I execution time. The structure of a component generated by
ies. The execution Sub-model detines the semantics of & noqe js always hierarchical where the top component is
components execution. An example of this model for a clo

T . U . i ays a composite component (parent).
gipsr():lllc;té%n is depicted in Figures 2 and 3 which will be further 2) Execution Sub-ModelPECOS provides a sub-model

1) Structural Sub-Model:There are three main entities infor the execution of applications, that shows how data are

nchroniz mon mponents running in different thr
PECOS structural sub-model: components, ports and conn?e)é—C ° _ed among components tu g in differe eads
and describes the their semantics.

tors. Each component has a semantics and a well-define . .
behavior. Components form the model kernel that is used to or- roblems of data synchronism may happen in PECOS. For

. . .__.Instance, suppose there are two active components connected

ganize both data and computation of the generated application. .
o) 0 each other through a port. Both can read and write data

In the example shown in Fig. 2, the components degice

clock display, eventloopand digital display. Ports provide an simultaneously by different operations. To solve this problem,

) . . active and event components have a private data space where
interaction mechanism among components. Output ports are " - :

. X ey can update unconditionally and periodically a private data
connected to input ports through connectors as |Ilustratedthn

Fig. 2, that shows the output portssecandstarted and input at can be synch_romzed with a pa_rent gomponent. In Fig. 3
. : . : we can see the private data space indbgiceand eventloop
ports time, time.milsecs draw. Connectors describe a data
i . . omponents.
sharing relationship between two ports and are represented

by lines connecting the ports.

II. COMPONENTMODEL

Device
. (active)
DEVICe « Data space
A\
msecs time
port port)
Clock Display
. EventLoop Digital)
time_msec Clock ' (active) Disgplay Display
port Data space

Digital
Display Fig. 3. PECOS component model for a clock application (execution sub-
model).

EventLoop
started draw

port port

Due to this need for synchronization, active and event
) o components have two possible behaviors: execution and syn-
r';'gagl')' PECOS component model for a clock application (structural SuBp, iz ation. The execution behavior defines the actions per-

formed when the component is executed. The synchronization

Components in PECOS can be primitive and composeghavior specifies how the private data space is synchronized
A primitive component can be passive, active or an eveYith the parent component (arrows in Fig. 3). The execution
Passive components cannot control their execution, and 8fénantics obeys the following simple rules:
used as part of the behavior of other component being executed Execution behavior of a passive component is executed
synchronously. In Fig. 2, the passive components coek by a thread of its parent component;

« Synchronization behavior is executed by a thread of its

parent component; (active)

o Active and event components execute their sub-
components into their own behavior using a control 4Wv
thread;

'
[}

« Each component has a scheduler for its children.

B. PECOS in BeanWatcher

As mentioned before, BeanWatcher adopts PECOS as jts
component model adding a communication component
support remote monitoring applications for wireless networks
As an example, consider a wireless network and a temperature
application with three components: one to present the temper-
ature, one to perform data fusion and one for communication,
as depicted in Figures 4 and 5.

Communicator Data Fusion Thermometer

Fig. 5. Using PECOS in BeanWatcher (Execution sub-model).

a J2ME [3] component repository to develop monitoring
AppIComponent applications for wireless networks to portable devices such

(active) as palms and cell phones.
temp data

port port

A. BeanWatcher Architecture

Figure 6 shows the BeanWatcher architecture which has
three different modules: repository, processing and presenta-
tion.

Thermometer

sensing
port

Communicator Presentation

receiver when requested

ort
. Wizard Workplace Codg
Generation
include use include when
Fig. 4. Using PECOS in BeanWatcher (Structural sub-model). eSS
In the structural sub-model of BeanWatcher, every compq Component Repository < C;mﬁor?e”t
nent that monitors data provided by the wireless network (e.d complete chavior
a thermometer) is an active component since it just receiv{ | Java | |J2ME | | C++
data that is presented to the user. Also the ApplCompone - :
Repository Processing

is always an active component. Components used as alal
indicators are event components. Internal components (used
by a parent component) are passive. In Fig. 4, the data fusion
and communicator components are passive. In addition, we
added ashow functionality to the components because the The repository includes all the components, generated by a
generated remote applications show raw or pre-processed d¥#ard, that can be used to develop the application. For the
from the wireless network. sake of flexibility, Beanwatcher allows the addition of several
The execution sub-model of BeanWatcher does not use #A&Jet languages to the repository, such as Java, C/C++ and
thread concept. We adopted a pipeline execution, i.e., 0 ynbedded C. These target languages are associated with the
one component can be executed at a time. This is illustrat&pository module and enables the creation of applications in

in Fig. 5 where ApplComponent executes sequentially its sufifferent languages. The repository uses the component model
components. discussed in Section II.

The presentation module specifies the interface provided by

I1l. B EANWATCHER TOOL BeanWatcher to the user and it is composed by the workplace

BeanWatcher is a graphic tool based on components @®d the wizard. The workplace is the application building area
signed to the development of monitoring and managemaertd is divided into component edition and code edition. The

applications for wireless networks. The tool allows the devetomponent edition allows the user to choose and place the

opment of applications by a user with limited programmingomponents according to the application requirements, adding
experience. Furthermore, BeanWatcher allows the generatammnectors when two or more components demand it. The
of applications for different platforms if the appropriatedode edition is used to implement the behavior and show the
component repository is available. In our case study we uskrhctionality of the application being created. Furthermore,

Fig. 6. BeanWatcher architecture.

it allows the re-implementation of the components in théhne workplace. Thus, the added component becomes a sub-
application. component of theApplComponentlf necessary, a connector
The wizard is an important part of the presentation modutan be added to allow interactions among components.
that enables the creation of new components extending thénce the application is built it is necessary to implement
repository. To create a new component, it is necessary tt® behavior and the visualization of thpplComponent
label the component and specify its ports. However, both tidis is done in the code edition area in the workplace. All
behavior and show functionalities must be implemented in thige attributes and methods of this component are generated
code edition. It is important to mention that when a new targatitomatically. At this point the user can modify the behavior
language is added to the tool, the components currently in thiethe sub-components selecting the desired sub-component
repository can be replicated by the wizard so the componeatsd editing it in the code edition area.
can be available in the new language. This is possible becaus®nce the user saves the application, the code of each sub-
the wizard stores all the information necessary to create tb@mponent in the component edition area, ApplComponent
components in a XML file. Thus, to add a new language ttend a default presentation code of BeanWatcher is automati-
user only needs to create a new template for that languaggly generated. After that, the user can compile and run the

Fig. 7 shows a template for Java. generated application.
IV. USING BEANWATCHER
/_ \ In this section is devoted to the use of BeanWatcher. First,
public class <_CODponent names| .
we show how to create a component through the wizard.
<atribut o H H H
Msinistis. NI Then, we describe how to replicate the repository for a new
" used vhen component receiver sous daca.®/ target language. At last, an exemple application is built using
private <{_type input port attributex
<_name_input_port attributerInPort<_dimension input_ports:: BeanWatChel’
</anribute i The example application monitors the temperature data

provided by a wireless network. As we wanted to perform
data fusion, we will create through the wizard the data fusion

<methods_in_pw»

/%% This method i3 to get output for this component, is private because Component, Wh'Ch |mp|ements the Marzu”o functlon [9] The
* the component has one OUTpOET.
¥ @return return the data in port value. app|ICatIOI’l and the Components W|” be Created USIng JZME
i
private < type input_port attribute»< dimension input port:
get<_name_input, port method> InPort {}{ ~I1x]
returnithis.<{ name input port attribute>InPort): File Help

ifmethods_in_pv} ﬂ |@

New Component rl@mﬁmemmmm|

public woid behaviour() { Author Name: [André Lins |
}
G Name: |DataFusmnCnmpnnent \
public Object show()! - . R
return new Object(): Directory for new : (Mallal) (r cirepositon)2) & |

¥ 1@ INPUT dataReceiver INTEGER 1D |

Port N: o
3 | QUTPUT dataSender INTEGER 1D A |

Port Type: | INTEGER -
Port Dimension: ‘1D bl

Port Function: | OUTPUT -

Fig. 7. Template to create Java applications.

| addport = ®
The processing module performs the code generation a B Creste Comporent
updates the components repository with new behavior in
plementations. The code generation obeys the application _ _ _
built by the user on the workplace. To have the complete Fig. 8. Creating a new component through the wizard.
application, the behavior of the composite component must
be implemented. A. Creating a New Component
B. Application Development in BeanWatcher Initially, to create the component we need to specify the

interface of the component, i.e., the input and output ports,
the associated data types and the proper dimension. This
task is performed in the wizard interface depicted in Fig. 8.

ﬁ'érst, we must specify the author’'s name and the component’s
name. Second, the repository filshould be indicated. Third,

Every application generated by BeanWatcher has a comp
ite component calledApplComponenti.e, every component
added to the workplace will be a sub-componenfpplCom-
ponent To create an application, the user must go through t
three steps: building, implementation and generation.

In the bwldmg phase, the user chooses One or mor_aThe repository file contains the specification of all components; it is used
components to be added to the component edition areatdneplicate the repository whenever necessary or desired.

the component’s ports are specified. Finally, the compon e r i — =Eix

are actually created in all target languages available in tl_ ———
repository. f[eo]
After the creation of the component, BeanWatcher aut|] e comanen | B repostaryrepicaton |
matically generated every code that was possible. HOWeV(iamguages ¢~ =
we must implement the behavfoof the component, which

. Repasitary File W \allaljavawotkiizardisrodata_storeld|
in this case is the Marzullo function. This can be done in th L - = i
oy . irectory for new 1 Khwvizar J21
code edition area (Fig. 9). -
% Replicate

=10l

File Help

B B § i H| e |5
}]
o

*This methad implements component’s behavior,

*this can be changed for user

*

i

public void behavior{
Jiinsert behavior code

}

Fig. 10. Replicating the repository.

* This method specifies how the component is shown
*tan be changed for user

* @return the object for visualize appl

*

i

behavior, new algorithms can be implemented. The communi-
cator is a passive component that allows the communication
among thesink and sources These components were added
to the component edition area.

After the addition of the components it is necessary to
connect them. One connector allows the data forwarding from
the communicator to the data fusion component. The other
connector allows the thermometer to receive and show the data
previously fused. The application available in the component
B. Replicating The Repository edition area is shown in Fig. 11.

The specification of all components in the repository is
stored in a XML file where the tags are used to describ EEE
the interface of a component (Fig. 7). When a new targ(™ ** :
language is added, the repository needs to be replicated so Psamwn ~| & || @ || § | x» || & | D | &
components can be available in that language. This repositc
file is used by BeanWatcher to automatically generate tt
code for all components in a desired language. Howeve

public Ohject showy
lingert show code

Fig. 9. Code edition area.

=10l

particularities of each component, such as the behavior a
showfunctionalities, still requires implementation.
The replication can be performed in the wizard interfac

1000”
75.0-

50.0-
25.0-

depicted in Fig. 10. First, we have to choose the new targ
language. Then, the location of the repository file must b
specified. Finally, we must indicate the location were th
components will be stored and start the replication. Agait
the implementation of the behavior astiow functionalities
still needs to be implemented in the new target language.

[Component | Cade

C. Creating an Application
Now that we have all the necessary components the appli-
cation can be built. Initially, we chose the components from Once the application is built the next step is the implemen-

the menu (thgrmometgr, data fusion and communicator). T, of the behavior anghowof the ApplComponentThis
thermom_eter IS an active component that shows the teMpEEyone through the code edition area shown in Fig. 9. Finally,
ture prowded by the networ!(equipments. The dgta fusion i Qving the project we have the application ready. This example
passive component based in the Marzullo function. Howev%as executed in a simulator included in the J2ME Wireless
as BeanWatcher allows the optimization of the CompONeR) oyt [3] and the result can be visualized in Fig. 12. Note

2In the case of graphical components, the user also needs to implementthl@t we .Can a(.jd different grapr_ncal elememsl mtg shew
showfunctionality. method improving the presentation of the application.

Fig. 11. Workplace.

Farll
Ther ter Active
Temperature: snull= C, =null= C

=) Tl
[Thermometer Active

Temperature: 2 C, 5C

hermometer

(1]
[2]
(3]
4]

(c) Fused data is pre-
sented to the user. [5]
[6]

(7]
V. CONCLUSIONS ANDFUTURE WORK 8]

BeanWatcher is a powerful tool that adopts a component
model aiming the development of management and monitoring

Eack

=

\ Tal

L /.

SELECT » s

D r

< SELECT

(a) Application presen- (b) Application wait-
tation. ing for data.

Fig. 12. Execution of the generated application.

ACKNOWLEDGMENT

This work has been partially supported by CNPq, Brazil,
under process 55.2111/2002-3.

REFERENCES
IEEE, “Wireless standards zone. [online] available:
http://standards.ieee.org/wireless/.”
B. Morrissey, “802.11 takes center stage. june, 2002. [online]

available:http://www.80211-planet.com/news/article.php/1355221."

S. Microsystems, “J2me. [online] available: http://java.sun.com/j2me/,
access: March 2003."

G. C. Hazan, “Jsuper waba. [online]
http://www.superwaba.com.br, access: March 2003.”

N. Instruments, “Labview 6.1. [online] available: http://www.ni.com/,
access: January 2003.”

Agilent, “Vee onelab 6.1. [online] available: http://www.agilent.com/,
access: January 2003.”

Pecosproject, “Composition enviroment. [online] available:
http://www.pecos project.org/software.html, access: January 2003.”

T. Genssler, A. Christoph, B. Schulz, M. Winter, C. M. . Stich, C. Zeidler,
P. Mller, A. Stelter, O. Nierstrasz, S. Ducasse, G. Arevalo, R. Wuyts,
P. Liang, B. Schonhage, and R. van den Born, “Pecos in a nutshell,” The
Pecos Consortium, Tech. Rep., September 2002.

available:

applications for wireless networks. BeanWatcher was desigri@d K. Marzullo, “Tolerating failures of continuous-valued sensoiCM

to allow users with limited programming experience to develop
a wide variety of monitoring applications. In addition, it
supports several target languages.

As a future work, we will develop a module to generate
applications based on rules, i.e., if different types of data
are received, the application will automatically choose the
appropriate interface according to a set of rules simplifying
its use. In this case, the application will be composed by a set
of synoptic panels that will be automatically chosen based on
the data received.

Transactions on Computer Systems (TQGS). 8, no. 4, pp. 284-304,
1990.

