
Figure 2: Microkernel: located between software and hardware

Microkernel for Nodes of
Wireless Sensor Networks

Laboratório de Engenharia de Computadores
Departamento de Ciência da Computação
Universidade Federal de Minas Gerais

Vinícius Coelho de Almeida , Breno Augusto Dias Vitorino,
Antônio Otávio Fernandes, Diógenes Cecílio da Silva, Claudionor Nunes Coelho Jr.
Universidade Federal de Minas Gerais - Departamento de Ciência da Computação

Projeto: SensorNet/CNPq

, Luiz Filipe Menezes Vieira, Marcos Augusto Menezes Vieira

Introduction
Wireless sensor networks (WSN) may be composed from thousands of

nodes, which possess storing, processing,communication and sensing
capacity, although with strong limitations. They must have self-configuration
and adaptation mechanisms to support fault-tolerance. Moreover, they may
be equipped with different sensors, given the applications' nature inside
them, such as: temperature, pressure, movement, etc.

A microkernel may be defined as an operating system(OS) core. Its
objective is to ease the programmer's work in developing application for a
platform and to manage the resources that constitute the sensor node. The
nodes' microkernel must provide to the programmer routines that allow the
development of his applications.

This work is part of SensorNet project, whose research is focused in
architecture, protocols, management and applications in WSNs. Its final goal Is
to develop a microkernel for nodes in WSNs, using eligible concepts from
existing systems. This microkernel will run in a device still being developed In that
project.

UFMG - ICEx

DEPARTAMENTO DE CIÊNCIA DA
COMPUTAÇÃO

Conclusions
The microcontroller to be used to execute the microkernel is a MSP430, from Texas

Instruments. However, we believe that the proposed features and services may be
ported to other similar microcontrollers smoothly. The implementation language is a C
extension specific for the chosen microcontroller. The sensor node is being built in
SensorNet project and it will be used in order to validate the functioning of our proposed
microkernel.

Features
Our microkernel for nodes in WSNs, currently in development stage, is being

implemented in C language. This decision was taken in order to grant more
portability across different microcontrollers, not depending on a specific
architecture. We analyzed different OSs for nodes in WSNs and embedded
devices, such as: TinyOS, Bertha, SensorWare and Eyes. This allowed us to identify
their eligible features and concepts, which constitute the base for the new
microkernel in development.

Event-driven data delivery model
WSNs can be divided in 4 delivery models: continuous, event-driven,

observer-initiated and hybrid. In continuous type, the sensors will report their
readings at determined rate. In event-driven, sensors will inform to the
application when certain events occur. In observer-initiated, sensors will reply to
a request from applications. At last, in hybrid, the later approaches can be
present at the same time.

Due to the reactive behavior of the most of applications in WSNs, the event-
driven model was the chosen to integrate the new microkernel. It is the most
attractive because the energy expenses of this model are low, when
compared to the other cited approaches.

Code mobility support
Transmission in WSNs is the process that consumes the most energy, being

a good practice to minimize code mobility. However, this functionality should
be supported because it allows to dynamically deploying different algorithms
over the network. In addition, the nodes themselves can be programmed
automatically, from a "programmer" node.

Nodes memory in WSNs is a very scarce resource. So it must be used
parsimoniously. Some OS functionalities must be available all the time, but there
are others that are application specific. Separating these functionalities in
distinct application program interfaces (API) and installing them in the nodes in
a need-to-use base, the memory will be used most efficiently. For example, if a
node will only read temperature, it is unnecessary and wasteful to load the
movement sensing API, too. The objective of this approach is clear: load in a
node only the needed functionality in order to save memory.

Application program interfaces separation

Nodes in WSNs possess storing, processing, communication and sensing
capability, but they are very limited. The microkernel must consider this fact, in
order to attend the specific requirements of these nodes and their WSNs. The
identified demands to be attended are: low energy consumption, small
computing power, fault-tolerance and self-configuration.

Operation on constrained resources

Figure 1: A typical WSN

Nodes Management
Tasks scheduling and priority designation; memory allocation and

deallocation for applications, contiguous addressing space between RAM and
Flash memory; access to hardware resources, mainly radio and sensors.

Fault-tolerance
Nodes may be distributed at harsh environments or difficult access regions. So,

they must try recover themselves from eventual failures.Otherwise, the node must,
at least, try to restart.

Services
The microkernel is situated between hardware and software levels, as depicted in

Figure 2. The services are divided in APIs and integrate the microkernel core, being
always available in a node.
Other APIs, specific to the sensing type (pressure, temperature, etc), will be created
from that core services.

 Their signatures, in C-like format, are described below.

Radio API
Int Send (Packet p): sends a data packet through the radio.
Packet Receive(): receives a data packet from the radio.
int SetMode(int mode): sets the operation mode, where each mode provides

different functionality levels (and consuming different energy levels).
int SetRange(int meter): sets the radio’s range, in meters.

Sensor API
int Read(int port): reads one byte.
int SetMode(int mode): same as Radio API.
int SetInterrupt(int port): prepares the sensor to trigger an interruption when it

detects an event.
int DisableInterrupt(int port): frees the sensor from the obligation to trigger an

interruption when it detects an event.

Memory API
int Load(int size, char *addr, char *buf): read bytes from the memory.
int Store(int size, char *addr, char *buf): store bytes on memory.
Int SetMode(int mode): same as Radio API, but to Flash memory.

I/O Ports API
int Read(int port): same as Sensor API.
int Write(int buf, int port): writes one byte in a port.
int SetInterrupt(int port): same as Sensor API.
int DisableInterrupt(int port): same as Sensor API.

Battery API
int EnergyLevel(): returns the avaliable energy level in the node’s battery.

Mobility API
int SendCode(char *code): sends code on radio to execution in a neighbor node.
int ReceiveCode(char *code): receives code on radio from a neighbor node, for

posterior execution.

Microcontroller API
int SetMode(int mode): same as Radio API.
int SetTimer(int period, int timer): set the timer to trigger an interruption at periodic

intervals.
Int DisableTimer(int timer): frees the microcontroller from the obligation to trigger an

interruption at periodic intervals.
Other functionalities: system clock generator, RAM clearing routine, RAM self-test,

ROM checksum, integer multiplication, interrupt management.

	Página 1

