
Middleware for
Wireless Sensor Networks

Laboratório de Engenharia de Computadores
Departamento de Ciência da Computação
Universidade Federal de Minas Gerais

Breno Augusto Dias Vitorino, Luiz Filipe Menezes Vieira, Marcos Augusto Menezes Vieira, Vinícius Coelho de Almeida,
Antônio Otávio Fernandes, Diógenes Cecílio da Silva, Claudionor Nunes Coelho Jr.
Universidade Federal de Minas Gerais, Departamento de Ciência da Computação

Projeto: SensorNet/CNPq

Introduction
Lately, advances in the area of hardware and wireless communication

had created a new paradigm for environment surveillance. Small, low cost
devices can be installed in inhospitable environments or places of difficult
access. Collaborating through message exchanging, these devices
measure environmental characteristics such as pressure, temperature and
luminosity, sending these data to a base station. In this way, the user has a
whole perception of the environment and can take off important conclusions
from these measurements. This is the wireless sensor networks (WSN)
paradigm.

WSN's have attracted great interest of the scientific community in the
areas of habitat monitoring, toxic substance detection, target tracking, etc.
Seen the potential of these applications, an important question is how to
program these networks in a simple and clear way, using the available
resources efficiently. This objective is pursued by the middleware specified in
this work. This software is capable to assist the WSN programming, supplying a
finite state machine view of the problem. This approach is based on the event-
driven programming model, which leads to great energy savings.

UFMG - ICEx

DEPARTAMENTO DE CIÊNCIA DA
COMPUTAÇÃO

Features
!

!

!

 An appropriate programming environment to express applications in WSN -
this is our main motivation for developing this middleware. The challenge is
creating a language that supports the peculiarities of sensor networks and
generates an executable code that efficiently uses the node's resources.
Some of these peculiarities are: close interaction with the environment,
sensor node failure when its energy runs out, etc. The decentralized nature of
this network leads to distributed algorithms as a common way to implement
applications. This class of algorithms has being favored in this language;
Support for code mobility - although the decision of transmitting the code
through the network has energy overhead, it is a necessity. First, some
applications don't know a priori its parameters, like sensor reading
frequency. Even if they were known, users may want to change this
parameter, according to current results. Another important use of code
mobility is the ability to install new programs after network establishment. At
any time, one node could be introduced just to forward the new code to its
neighbors, which would be broadcasted to the network. New application
versions could replace old ones;
Event-driven programming - most applications will perform some
computation just over some sensor value thresholds, and remain idle the
rest of the time, when the sensor nodes can be put into "sleep" mode to save
energy. The middleware will allow programmers to execute computations in
response to detected events. The set of events available may be
customizable. Some kinds of events are timeouts, reception of messages,
sensor readings;

Table 1: Comparison between this middleware and other approaches

!

!

Abstraction from specific node characteristics - the node should ignore a
program that requires specific hardware capabilities that are not available.
To ease the implementation of applications, a given code should be able to
run in every node in the network, despite their differences in type and
number of sensors;
Energy-efficient - all the features presented above should use policies that
improve network lifetime, by saving energy as much as possible. The
programs should run efficiently on the node, and the middleware enforces
the use of optimized binary code.

Specification
The language offered by this middleware use the C language core. It is

widely used in embedded software development, so it represents minor effort
for developers to learn another syntax. The compiled C code also produces
an efficient binary code, which is one of our requirements. The use of a
scripting language was considered in the beginning, but then it was discarded
because this language class imposes a prohibitive computational overhead
when interpreting them, what invalidates the programming of infrastructure
applications. Moreover, it would be complicated to compile it in an efficient
form.

The pointers had been removed from then chosen language. Dynamic
memory allocation is not possible because it demands a complicated
memory management which can't exist with such few computational
resources offered by sensor nodes. This decision means that the data
structures created by the programmer will always have a maximum size
defined during development.

The middleware will generative native assembly code to the target
platform from a given source code. So, the middleware will have to add any
additional features in the binary code directly or generating system calls to the
operating system. Common features, like code mobility, will have support from
the operating system.

There will be special blocking calls to implement an event-driven
programming. These calls represent specific events that we wish to detect,
and can be combined with and/or operators to determine more complex
conditions to continue the normal program execution. This feature allows the
program to the thought as a finite state machine, where transitions represent
the observed events and the states their handling. While the execution is
blocked, the operating system should schedule another program for
execution or put the sensor node in low power mode, saving energy.

The blocking calls will access the sensing and networking resources,
abstracting the operating system API. These calls will be implemented as
additional modules to the operating system, with hardware-specific code. For
example, if the API has a generic function to send data, the middleware will
have modules to convert the data into structured packets and vice-versa.

Middleware c@t1 SensorWare2 TinyDB3 TinyGALS4 This middleware

Category Holistic programming Scripting Database Modular programming Finite state machine

Base programming
language

Scheme Tcl SQL C C

Energy overhead High (Broadcasts to
select groups)

High (Interpret scripts) Medium (Maintain a
routing tree and parse
queries)

Low (Manage message
queues)

Low (Computation in
response to events)

Semantic gap Low (Declaration of
sensor node groups)

Medium (High-level
commands)

Low (SQL queries) High (Explicit
concurrency)

Medium (Finite state
machine model)

Data delivery model5 Event-driven Event-driven Continuous/
Observer-initiated

Event-driven Event-driven

1. D. P. Seetharamakrishnan, “c@t: A Language for Programming Massively Distributed Embedded System”, Unpublished Masters Thesis at
Massachusetts Institute of Technology, September 2002.

2. A. Boulis and M. B. Srivastava, “A Framework for Efficient and Programmable Sensor Networks”, In Proc. of OPENARCH 2002, June
2002.

3. S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “The Design of an Acquisitional Query Processor for Sensor Networks”, To
appear in ACM SIGMOD Record, June 2003.

4. E. Cheong, J. Liebman, J. Liu, and F. Zhao, "TinyGALS: A Programming Model for Event-driven Embedded Systems," Proc. ACM Symp.
Applied Computing, Melbourne, FL, March 2003.

5. S. Tilak, N. B. Abu-Ghazaleh, W. Heinzelman, “A Taxonomy of Wireless Micro-Sensor Network Models”, Mobile Computing and
Communications Review, 2002.

	Página 1

