
BeanWatcher: A Tool to Generate Multimedia
Monitoring Applications for Wireless Sensor

Networks?

André Lins1, Eduardo F. Nakamura1,2, Antonio A.F. Loureiro1, and
Claudionor J.N. Coelho Jr.1

1 Department of Computer Science
Federal University of Minas Gerais – UFMG

Belo Horizonte, MG, Brazil.
{alla,nakamura,loureiro,coelho}@dcc.ufmg.br

2 Department of Technological Development
Research and Technological Innovation Center – FUCAPI

Manaus, AM, Brazil.
eduardo.nakamura@fucapi.br

Abstract. In this paper we present a new tool called BeanWatcher
that allows the semi-automatic generation of multimedia monitoring and
management applications for wireless sensor networks. Thus, particular-
ities of multimedia management and wireless sensor networks were taken
into account. The architecture of the tool is based on a component model
flexible enough to allow the creation of new components and the opti-
mization of the components currently provided. BeanWatcher was de-
signed to offer a development environment suitable for both expert and
beginner users allowing them to choose the programming language that
better fits the application requirements.

1 Introduction

A Wireless Sensor Networks (WSN) is a special kind of ad-hoc network with
distributed sensing and processing capability that can be used in a wide range
of applications, such as environmental monitoring, industrial applications and
precision agriculture [1–3]. As a recent practical example, Intel Research and
Agriculture and Agri-Food Canada (equivalent to the U.S. Department of Agri-
culture) are working on a project in which a WSN of motes [4] is used to measure
air temperature on a 50-acre vineyard [5] to enhance the growth of grapes and
the quality of the wine produced.

Despite their potential applications, such networks have particular features
imposed by resource restrictions, such as low computational power, reduced
bandwidth and specially limited power source. Current research efforts have fol-
lowed different lines such as network establishment [6, 7], data dissemination [8,

? This work has been partially supported by CNPq grant number 55.2111/2002-3.



9], network and resource management [10–13]. Therefore, tools to assist design-
ers with the development of management applications in such networks are very
useful.

Usually, WSNs are composed of source and sink nodes [8, 9]. Sources are
data generators that detect events and provide observations or measurements
of a physical phenomena. Sinks are designed to receive data sent by sources.
Therefore, such nodes can monitor and act in the network performing some
management function. Besides, sinks can act as gateways between the WSN and
a infrastructured network. Thus, sinks may also provide an interface to the user
allowing a manager to decide and act based on the data provided. This interface
can be textual or multimedia becoming a useful tool to network managers.

In this paper, we use a precision agriculture example as our guiding appli-
cation. In this scenario, an orchard or plantation can be equipped with several
sensors gathering different types of data, such as soil temperature, humidity
and acidity or alkalinity. A walking employee can receive data from those sen-
sors through a wireless network interface into a portable device that acts as a
sink node as depicted in Figure 1. The application in the portable device can
be implemented in Java running on a portable platform such as J2ME, or Su-
perWaba. In this case, a multimedia interface, with graphics, animations and
audio/video stream capability could be provided to exhibit data collected from
different sensors and to support the network monitoring and management.

Fig. 1. A WSN example.

The application described above is usually designed to solve a specific issue,
not considering a more general model, in which we could have, for instance,
code reuse. In this work we present a tool called BeanWatcher that aims the
code reuse proposing a standardization to the development of such applications.
BeanWatcher allows the development of management applications in different
programming languages such as Java, C/C++ and Embedded C. Our tool gen-
erates a management application for WSNs in a semi-automatic fashion. These



applications are intended to be run on portable and mobile devices acting as a
sink node monitoring raw sensory data and multimedia data streams.

Some commercial tools like LabView3 and HP VEE4 were designed to develop
applications to monitor and act on instruments. However, those tools are propri-
etary solutions hardly integrated with other tools and languages. Furthermore,
those tools do not allow the development of applications to portables devices nei-
ther monitoring applications for WSNs. Other related tool is the PECOS Com-
ponent Environment5 that allows the development of monitoring and actuation
applications. In this paper, we show how it can be used to develop applications
running in portable devices.

This paper is organized as follows. Section 2 presents some challenges in
the design of multimedia management applications for WSNs. In Section 3 we
present the component model used in BeanWatcher. Section 4 presents the Bean-
Watcher architecture and Section 5 shows how we can use BeanWatcher to de-
velop a simple monitoring application. Finally, Section 6 presents our conclusions
and future work.

2 BeanWatcher Challenges

In the following, we discuss the challenges that we must address when developing
a multimedia management application for WSNs.

2.1 Multimedia Management for WSNs

Multimedia management faces new challenges in WSNs concerned with provi-
sion of scalable quality of service (QoS) through the management of metrics,
such as coverage [14–16], exposure [17, 18], energy consumption [12, 13], and
application specific metrics (e.g., for target detection, miss detection and false
detection ratios). Due to the ad-hoc nature of WSNs, which might be deployed
in hostile environments with fairly unpredictable conditions, management must
be scalable, self-configurable and adaptive to handle such challenges. A classic
approach is the data-centric design of WSNs [8, 9], which aims the integration
of application-level and network-level operations to provide power-efficient solu-
tions.

In addition, WSNs can be composed of unrelated sensors that measure dif-
ferent physical properties (e.g., temperature, pressure, image, video and audio
streams) that are semantically and/or structurally distinct. In such networks, in-
commensurate data can be understood as different types of media. In this case,
multimedia management encompasses resources, theories, tools and techniques
to manipulate data provided by different sources (multiple medias) with the goal
to extract relevant information.
3 National Instruments – Labview 6.1. http://www.ni.com/
4 Agilent – VEE Onelab 6.1. http://www.agilent.com/
5 PECOS Composition Environment. http://www.pecosproject.org/software.html



From this perspective, data fusion [19–21] should be used by multimedia
management to combine different medias (e.g., video streams and temperature)
to obtain relevant information (e.g., fire detection) or to improve the quality
of the data provided (e.g., noise reduction). Therefore, fusion of multimedia
data is equivalent to cooperative fusion proposed by Durrant-Whyte [22] where
different nodes contribute with different data (e.g., video and audio streams) to
accomplish a common task (e.g., intrusion detection). In addition, simple data
aggregation schemes [11, 23, 8] can be used to summarize, organize and retrieve
data in a power-efficient manner.

Figure 2 depicts some possible components in a multimedia management
application for WSNs. The Stream Organizer receives multiple data streams
through the same communication channel, then it organizes and directs them
to the appropriate processing module. Three levels of processing are identified.
The first level is the Stream Processing, which can perform low level data fusion.
The second level is represented by the Feature Extractor which fuses several
data streams to obtain relevant features from the environment. The last level
is represented by the Decision Making where action plans are formulated in
response to a identified situation. According to the application requirements
or computational restrictions, the application can encompass only the desired
processing levels (stream processing, feature extraction or decision making). This
is also depicted in Figure 2 where the user interface is connected to all processing
levels. In addition, the user can set properties and parameter related to the
components responsible for each level of processing.

Stream Processing

Stream
Organizer

Stream 1 Processing

Stream 2 Processing

Stream N Processing

.

.

.

data streams

data stream 1

data stream 2

data stream N

Feature
Extractor

feature 1

feature 2

feature m

Decision
Maker

.

.

.

User Interface

Fig. 2. Possible application involving multimedia management.

Considering our precision agriculture example with different data streams
(soil temperature, acidity and humidity), which can be received in any order
through the same communication channel. Thus, we need a component to or-
ganize the data streams properly. Further processing can be executed on these



streams, such as data fusion algorithms like Kalman Filter [24], Particle Fil-
ter [25] or the Marzullo function [26] to obtain more accurate values. If desired,
these data can be fused again to extract characteristics, like the soil conditions
that are favorable to cultivation of “X” or whether the soil is dry. Yet further
data fusion can be applied to obtain decisions, such as “X” should be harvested
in one week or irrigation required or freezing threat is eminent. Multimedia fu-
sion (concerned with feature extraction and decision making) is strongly coupled
to the application and the type of data provided by sensors. Thus, the reusabil-
ity of a multimedia fusion component might be limited to a specific domain of
application and sensors. In addition, the development of such applications, and
a tool to generate them, is still subject to the particularities of WSNs.

2.2 Attending WSN Requirements

Traditionally, system design can be organized in a Logical Layer Architecture
(LLA) were the system is divided in different abstraction levels ranging from a
physical layer, that deals with computing devices, to an application layer, that
deals with business requirements. Usually, the LLA model is used in a bottom-
up approach. However, WSNs are application-driven, and as discussed in [10], a
top-down approach is preferable since once the business issues are understood,
the requirements of lower levels become clearer.

Clearly, different applications tend to present distinct features and restric-
tions. Thus, it is not feasible to provide a unique Application Programming In-
terface (API) that is self-contained. Instead, we should think of providing small
software components that represent elementary functionalities useful for various
applications.

Regarding the applications illustrated in Figure 2 and using the top-down
approach, we consider first the elements of the user interface that are related to
multimedia management applications for WSNs. As we consider physical mea-
surements acquired by sensors, it is reasonable to provide visual components
appropriate to display common measurements, such as, temperature, pressure,
acidity and humidity. Thus, BeanWatcher provides some visual components (e.g.,
thermometer, speedometer, gauge, and valued maps) to cover different types of
sensory data.

The next steps should try to identify features in data streams. As mentioned
before, this task depends on the application objectives, and, thus, the tool does
not provide special components for them, since its reusability is restricted. For
stream processing, there are some popular fusion algorithms that can be applied
such as Kalman Filter, Particle Filter or Marzullo function. The current version
of the tool provides two components that implement the Kalman Filter and the
Marzullo function.

At the lower levels we need a component to receive data streams and to
properly organize them. To get data from sensors we implement a communi-
cation component that receives and sends data without worrying about their
semantics. Again, as we might have different types of sensors, we cannot pro-



vide a unique stream organizer. Besides, same sensors (data streams) can be
semantically distinct in two different applications.

In summary, our API comprises elements for visual display, low level data
fusion algorithms and communication operations. We chose to use a component
model to implement this API and to generate the applications using our tool. The
adoption of a component model allows us to take advantage of code reusability.

3 Component Model

BeanWatcher adopts the PECOS component model proposed by Genssler et
al. [27], and provides a communication component to allow the monitoring of
remote applications. In this section, we briefly describe PECOS and how it is
used in BeanWatcher.

3.1 PECOS Component Model

The PECOS component model aims the design of embedded systems, more
specifically field devices [27], which are executed directly by the instruments.
PECOS is divided into two sub-models: structural and execution. Structural
sub-model defines the entities included in the model, their features and proper-
ties. The execution sub-model defines the semantics of the components execution.
An example of this model for a clock application is depicted in Figure 3, which
is further discussed.

Device

Clock Display

EventLoop

Digital
Display

msecs
port

time
port

time_msec
port

draw
port

started
port

(a) Structural sub-model.

Clock Digital
Display Display

EventLoop
(active)

Data space

Device
(active)

Data space

(b) Execution sub-model.

Fig. 3. PECOS component model for a clock application.

Structural Sub-Model There are three main entities in PECOS structural
sub-model: components, ports and connectors. Each component has a semantics
and a well-defined behavior. Components form the model kernel and are used to
organize both data and computation of the generated application. In the example
shown, the components are device, clock, display, eventloop and digital display.
Ports provide an interaction mechanism among components. Output ports are



connected to input ports through connectors as illustrated in Figure 3a, that
shows the output ports msecs and started, and input ports time, time milsecs,
and draw. Connectors describe a data sharing a relationship between two ports
and are represented by lines connecting them.

Components in PECOS can be primitive and composed. A primitive com-
ponent can be passive, active or an event. Passive components cannot control
their execution, and are used as part of the behavior of another component being
executed synchronously. In Figure 3a, the passive components are clock, display
and digital display. Active components control their execution, which is trig-
gered by a system request. In Figure 3a, the active components are device and
eventloop. Event components are similar to active components, but their execu-
tions are triggered by an event. A composite component is built using connected
sub-components, but their internal sub-components are not visible to the user.
In addition, a composite component must define a scheduling with the exact
execution order of its sub-components. In Figure 3a, the composite component
is the device.

Ports can be input, output or input/output ports. Input ports just receive
data from other components. Output ports just send data to other components.
Input/Output ports are bi-directional receiving and sending data from and to
other components.

PECOS also defines properties and a parent component. Properties are com-
ponent’s meta-data such as memory usage or execution time. The structure of
a component generated by the model is always hierarchical where the top com-
ponent is always a composite component (parent).

Execution Sub-Model PECOS provides a sub-model for the execution of
applications, that shows how data are synchronized among components running
in different threads and describes their semantics.

Problems of data synchronism may happen in PECOS. For instance, suppose
there are two active components connected to each other through a port. Both
can read and write data simultaneously by different operations. To solve this
problem, active and event components have a private data space where they can
update unconditionally and periodically a private data that can be synchronized
with a parent component. In Figure 3b we can see the private data space in the
device and eventloop components.

Due to this need for synchronization, active and event components have two
possible behaviors: execution and synchronization. The execution behavior de-
fines the actions performed when the component is executed. The synchroniza-
tion behavior specifies how the private data space is synchronized with the parent
component (arrows in Figure 3b). The execution semantics obeys the following
simple rules:

– Execution behavior of a passive component is executed by a thread of its
parent component;

– Synchronization behavior is executed by a thread of its parent component;



– Active and event components execute their sub-components using a control
thread;

– Each component has a scheduler for its children.

3.2 PECOS in BeanWatcher

BeanWatcher adopts PECOS as its component model adding a communication
component to support remote monitoring applications for wireless sensor net-
works. As an example, consider a WSN and a temperature application with three
components: one to present the temperature, one to perform data fusion and one
for communication, as depicted in Figure 4a.

ApplComponent
(active)

Thermometer Data Fusion

Communicator

temp
port

data
port

receiver
port

sensing
port

(a) Structural sub-model.

(active)

ThermometerData FusionCommunicator

(b) Execution sub-model.

Fig. 4. Using PECOS in BeanWatcher.

In the structural sub-model of BeanWatcher, every component that monitors
data provided by the WSN (e.g., a thermometer) is an active component since
it just receives data that is presented to the user. Also the ApplComponent is
always an active component. Components used as alarm indicators are event
components. Internal components (used by a parent component) are passive. In
Figure 4a, the Data Fusion and Communicator components are passive. In ad-
dition, we added a show functionality to the components because the generated
remote applications show raw or pre-processed data from the WSN.

The execution sub-model of BeanWatcher adopted a pipeline execution, i.e.,
only one component can be executed at a time. This is illustrated in Figure 4b
where ApplComponent executes sequentially its sub-components.

BeanWatcher gives at least two benefits to the user by adopting PECOS.
First, the component model allows the code reuse. Second, PECOS specifies that
the interaction of two components must be done through input and output ports;
this interaction simplifies the understating of the application that is constructed
by connecting input ports to output ports.

4 BeanWatcher Architecture

Figure 5 shows the BeanWatcher architecture that has three different modules:
repository, processing and presentation.



Repository

Presentation

Processing

Wizard Workplace Code
Generation

Component
Behavior

Java J2ME C++
... complete

include use
include when

necessary

when requested

Component Repository

Fig. 5. BeanWatcher architecture.

The repository includes all components generated by a wizard that can be
used to develop the application. It is important to mention that when a new
target language is added to the tool, the components currently in the repository
are automatically replicate to that target language so the user does not have
to generate them again through the wizard. The repository uses the component
model discussed in Section 3.2.

The presentation module specifies the interface provided by BeanWatcher to
the user and it is composed of the workplace and the wizard. The workplace is the
application building area and is divided into component edition and code edition.
The component edition allows the user to choose and place the components
according to the application requirements, adding a connector when two or more
components demand it. The code edition is used to implement the behavior and
show the functionality of the application being created. Furthermore, it allows
the re-implementation of the components in the application.

The wizard enables the creation of new components extending the repository.
To create a new component it is necessary to label the component and specify
its ports. However, the behavior and functionalities must be implemented in the
code edition.

The processing module performs the code generation and updates the com-
ponents repository with new behavior implementations. The code generation
obeys the application built by the user on the workplace. To have the complete
application, the behavior of the composite component must be implemented.

In summary, the architecture depicted in Figure 5 presents some benefits to
the user. First, it generates all the repetitive code to the user through the code
generation unit. Second, as we mentioned in Section 2, many applications require
unique features, so new components can be created through the wizard to attend
unpredicted requirements; and the behavior of new or current components can be
(re)implemented in the workplace. Third, it allows code reuse: once components
are implemented the user can make it available in the component repository for
future applications. Finally, the component repository allows the development
of application in several target languages, such as Java, J2ME and C++.



5 Application Development Using BeanWatcher

In this section, we present an example using BeanWatcher.

5.1 The Three-Step Generation Process

Every application generated by BeanWatcher has a composite component called
ApplComponent, i.e., every component added to the workplace will be a sub-
component of ApplComponent. To build an application, the user must go through
the three steps: building, implementation and generation (Figure 6).

Building

Im
pl

em
en

ta
tio

nG
eneration

Fig. 6. The three steps to create a BeanWatcher application.

In the building phase, the user chooses one or more components to be added
to the component edition area in the workplace. Thus, the added component
becomes a sub-component of the ApplComponent. If necessary, a connector can
be added to allow interactions among components.

Once the application is built, it is necessary to implement the behavior and
the visualization of the ApplComponent. This is done in the code edition area in
the workplace. All the functionalities and features of this component are gener-
ated automatically and are chosen by the user (e.g., implementation language).
At this point the user can modify the behavior of the sub-components selecting
the desired sub-component and editing it in the code edition area.

When the user saves the application, the code of each sub-component in the
component edition area, the ApplComponent, and a default presentation code of
BeanWatcher are automatically generated, including repetitive code. After that,
the user can compile and run the generated application.

5.2 Developing an Application

The application presented in this work is for precision agriculture, where a WSN
is used to monitor the soil conditions of a orchard of strawberries. Sensors will
be used to capture the soil temperature, humidity and acidity of the orchard.
For the sake of simplicity, our application will be restricted to stream processing



using the Kalman Filter, and no feature extraction nor decision making will be
performed by the application (see Figure 2).

Initially, we chose the components from the menu (temperature map, data
fusion and communicator). The temperature map is an active component that
shows the temperature provided by the sensors and represents the area delimited
by the sensors and is divided into four quadrants that show the respective fused
values; if the user wants the quadrants can be zoomed in. The data fusion is a
passive component based in the Kalman Filter.

The same procedure is repeated using the humidity and acidity maps that
will show the other fused measures.

The communicator must be added to get the data streams and it is a passive
component that allows the communication between sink and sources. Finally, a
filter component is added to organize the received streams (this component is
implemented by the designer).

After the addition of the components above, it is necessary to connect them.
Connector allows the data forwarding from the communicator to the filter, and
then to data fusion, and so on. The application available in the component
edition area is shown in Figure 7a.

(a) Workplace. (b) Code edition area.

Fig. 7. Development environment of BeanWatcher.

Once the application is built, the next step is the implementation. For the
filter component, we considered that packets sent by sensors indicate the geo-
graphic position, the type of data (temperature, acidity or humidity) and the
associated measurements. Thus, the filter only directs the data to the appropri-
ate output port. Also, the behavior and show of the ApplComponent need to
be implemented. This is done through the code edition area shown in Figure 7b.
Finally, after saving the project we have the application ready. This example was
executed in a simulator6 and can be visualized in Figure 8. Note that we can
6 The simulator is included in the J2ME Wireless Toolkit freely available at

http://java.sun.com/j2me/.



add different graphical elements to the show method improving the presentation
of the application.

(a) Menu. (b) Acidity. (c) Humidity. (d) Temperature.

Fig. 8. Execution of the application.

The application depicted in Figure 8 is presented as a menu where the user
selects the type of data to be collected. All the three measurements are presented
in a map, which is divided into four quadrants. The values represent the fusion
of the measurements provided by the sensors at each quadrant. This approach
is used for temperature, humidity and acidity streams.

6 Conclusions and Future Work

BeanWatcher is a powerful and flexible tool that adopts a component model
aiming the development of management and monitoring applications for WSNs.
BeanWatcher was designed to allow users with limited programming experience
to develop a wide variety of monitoring applications. In addition, it supports
several target languages.

Currently we are working on an extension module that uses PECOS to de-
velop the applications that are executed into the sensor nodes so we can develop
applications to both sink and sources. Thus, once data fusion and management
components are added to the BeanWatcher repository, they can be used to build
applications to sink and sources nodes so data fusion and management can be
done in-network.

Finally, another module is being developed to generate applications based on
rules, i.e., if the sink node is able to receive different sensory data, the application
will show such data according to a set of rules so the user do not need to interact
with the application.

As a future work we plan to implement a data fusion component to combine
different types of media, such as video and audio streams to accomplish a more
important task such as intrusion detection in a closed environment. However, as
stated in Section 2, the reusability of such components is restricted to specific
application domains and sensors.



References

1. Estrin, D., Girod, L., Pottie, G., Srivastava, M.: Instrumenting the world with
wireless sensor networks. In: International Conference on Acoustics, Speech, and
Signal Processing, Salt Lake City, USA (2001)

2. Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Communications
of the ACM 43 (2000) 51–58

3. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next century challenges: Scal-
able coordination in sensor networks. In: Proceedings of the Fifth Annual Inter-
national Conference on Mobile Computing and Networks (MobiCom’99), Seattle,
Washington, USA, ACM Press (1999)

4. Hill, J., Culler, D.: Mica: A wireless platform for deeply embedded networks. IEEE
Micro (2002) 12–24

5. Baard, M.: Wired news: Making wines finer with wireless. [online] available:
http://www.wired.com/news/wireless/0,1382,58312,00.html, access: March 2003
(2003)

6. Schurgers, C., Tsiatsis, V., Ganeriwal, S., Srivastava, M.B.: Topology management
for sensor networks: Exploiting latency and density. In: 2002 ACM Symposium on
Mobile Ad Hoc Networking & Computing (MobiHoc’02), Lausanne, Switzerland
(2002)

7. Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: An energy-efficient co-
ordination algorithm for topology maintenance in ad hoc wireless networks. Wire-
less Networks 8 (2002) 481–494

8. Krishanamachari, B., Estrin, D., Wicker, S.: The impact of data aggregation in
wireless sensor networks. In: Proceedings of the International Workshop of Dis-
tributed Event Based Systems (DEBS), Vienna, Austria (2002)

9. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: A scalable
and robust communication paradigm for sensor networks. In: Proceedings of the
6th ACM International Conference on Mobile Computing and Networking (Mobi-
Com’00), Boston, MA, USA, ACM Press (2000) 56–67

10. Ruiz, L.B., Nogueira, J.M., Loureiro, A.A.F.: Manna: A management architecture
for wireless sensor networks. IEEE Commmunications Magazine 41 (2003) 116–125

11. Zhao, Y.J., Govindan, R., Estrin, D.: Computing aggregates for monitoring wireless
sensor networks. In: Proceedings of the 1st IEEE International Workshop on Sensor
Network Protocols and Applications (SNPA’03), Anchorage, AK, USA (2003)

12. Zhao, J., Govindan, R., Estrin, D.: Residual energy scans for monitoring wireless
sensor networks. In: IEEE Wireless Communications and Networking Conference
(WCNC’02), Orlando, FL, USA (2002)

13. Mini, R.A.F., Nath, B., Loureiro, A.A.F.: A probabilistic approach to predict the
energy consumption in wireless sensor networks. In: IV Workshop de Comunicação
sem Fio e Computação Móvel, São Paulo, SP, Brazil (2002)

14. Tian, D., Georganas, N.D.: A coverage-preserving node scheduling scheme for large
wireless sensor networks. In: Proceedings of the 1st ACM International Workshop
on Wireless Sensor Networks and Applications, Atlanta, Georgia, USA, ACM Press
(2002) 32–41

15. Chakrabarty, K., Iyengar, S.S., Qi, H., Cho, E.: Grid coverage for surveillance and
target location in distributed sensor networks. IEEE Transactions on Computers
51 (2002) 1448–1453

16. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.: Coverage prob-
lems in wireless ad-hoc sensor networks. In: Proceedings of IEEE Infocom 2001.
Volume 3., Anchorage, AK, USA (2001) 1380–1387



17. Megerian, S., Koushanfar, F., Qu, G., Veltri, G., Potkonjak, M.: Exposure in
wireless sensor networks: Theory and practical solutions. Wireless Networks 8
(2002) 443–454

18. Meguerdichian, S., Slijepcevic, S., Karayan, V., Potkonjak, M.: Localized al-
gorithms in wireless ad-hoc networks: Location discovery and sensor exposure.
In: Proceedings of the 2001 ACM International Symposium on Mobile Ad Hoc
Networking & Computing, Long Beach, CA, USA, ACM Press (2001) 106–116

19. Luo, R.C., Yih, C.C., Su, K.L.: Multisensor fusion and integration: Approaches,
applications, and future research directions. IEEE Sensors Journal 2 (2002) 107–
119

20. Brooks, R.R., Iyengar, S.S.: Multi-Sensor Fusion: Fundamentals and Applications.
Prentice Hall, New Jersey, USA (1998)

21. Hall, D.L.: Mathematical Techniques in Multisensor Data Fusion. Artech House,
Norwood, Massachusetts, USA (1992)

22. Durrant-Whyte, H.F.: Sensor models and multisensor integration. International
Journal of Robotics Research 7 (1988) 97–113

23. Dasgupta, K., Kalpakis, K., Namjoshi, P.: Improving the lifetime of sensor networks
via intelligent selection of data aggregation trees. In: Proceedings of the Commu-
nication Networks and Distributed Systems Modeling and Simulation Conference,
Orlando, FL, USA (2003)

24. Brown, R.G., Hwang, P.Y.: Introduction to Random Signals and Applied Kalman
Filtering. 2nd edn. John Wiley & Sons, New York, NY, USA (1992)

25. Arulampalam, S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters
for on-line non-linear/non-gaussian bayesian tracking. IEEE Transactions on Signal
Processing 50 (2002) 174–188

26. Marzullo, K.: Tolerating failures of continuous-valued sensors. ACM Transactions
on Computer Systems (TOCS) 8 (1990) 284–304

27. Genssler, T., Christoph, A., Schulz, B., Winter, M., Stich, C.M.., Zeidler, C., Mller,
P., Stelter, A., Nierstrasz, O., Ducasse, S., Arevalo, G., Wuyts, R., Liang, P.,
Schonhage, B., van den Born, R.: Pecos in a nutshell. Technical report, The Pecos
Consortium (2002)


