
Efficient Power Management in Real-Time
Embedded Systems

Ana Luiza de A.P. Zuquim∗, Luiz Filipe M. Vieira∗, Marcos A. Vieira∗, Alex B. Vieira∗,
Hervaldo S. Carvalho∗, José A. Nacif∗, Claudionor N. Coelho Jr.∗,

Diógenes C. da Silva Jr.†, Antonio O. Fernandes∗, Antonio A.F. Loureiro∗
∗Department of Computer Science, Federal University of Minas Gerais, Brazil

Email: {ana,lfvieira,mmvieira,borges,hervaldo,jnacif,coelho, otavio,loureiro}@dcc.ufmg.br
†Department of Electrical Engineering, Federal University of Minas Gerais, Brazil

Email: diogenes@cpdee.ufmg.br

Abstract— Power consumption became a crucial problem in
the development of mobile devices, especially those that are
communication intensive. In these devices, it is imperative
to reduce the power consumption devoted to maintaining a
communication link during data transmission/reception. The
application of dynamic power management methodologies has
contributed to the reduction of power consumption in general
purpose computer systems. However, to further reduce power
consumption in communication intensive real-time embedded
devices we have to consider the state of the computation and
external events in addition to power management policies. In this
paper we propose a model of an Extended Power State Machine
(EPSM), where we adapt a Power State Machine to include
the state of an embedded program in the power state machine
formulation. This EPSM model is used to adapt the Quality of
Service (QoS) in communication intensive devices to ensure low
power consumption. In such development, a middleware layer fits
in the system’s architecture, being responsible for intercepting
the data communication and implementing the EPSM. Also, a
software tool was developed, allowing the Middleware Code to be
generated based on the State Machine. A case study demonstrates
the application of the proposed model to a real situation.

I. INTRODUCTION

Due to the evolution in the component miniaturization
process and the development of high-speed wireless network
technologies, there was an increase in use of mobile de-
vices in the last few years. The development of high-speed
wireless network technologies enabled an increased demand
for mobility and changed the focus of computing systems.
These systems are now communication intensive, which means
communication tasks are the system’s main goal and they
must be executed under certain constraints. Sensor networks
and wearable computer applications are examples of this shift
in paradigm. The increasing use of mobile devices lead to
the development of several applications and to an increase in
these systems functionalities. However, the power consump-
tion problem was accentuated once these devices are battery
operated and we know that batteries are not inexhaustive.
Treating the power consumption problem on PCs is quite
different, once we suppose we have a continuous power supply.
On laptops, otherwise, we do not have a continuous power
supply, but their size allow the use of bigger batteries, pro-
viding consequently more autonomy. The power consumption

problem arises since it is desirable to have mobile devices as
small as possible within longer periods of time, and battery’s
capacity grow with battery’s size.

In this work we will consider, more specifically, real-time
embedded systems used in a communication intensive environ-
ment, which have some peculiarities that may be considered
when we are developing new applications. For real-time con-
straints we mean that a real-time system must satisfy explicit
(bounded) response-time constraints or its correctness may be
compromised, risking severe consequences, including failure
[1]. In these systems, the response time is as important as the
correctness of the outputs. A real-time system does not have
necessarily to be fast; it must simply produce correct responses
within a definite time limit. A real-time embedded system
usually monitors on the environment where the embedded
system is installed, and if it does not respond in time to a
request, the result can be disastrous. Examples of real-time
embedded systems are aircraft engine control systems, nuclear
monitoring systems and medical monitoring equipment. The
need for real-time responsiveness associated with the commu-
nication intensiveness introduce extra constraints to a power
management policy.

The embedded systems design considers the systems char-
acteristics and restrictions that are fundamental for an efficient
system function. As a result, low power design of communi-
cation intensive real-time embedded systems must consider
the environment and application constraints to optimize the
system’s design [2], such as real-time responsiveness and
intensive execution of communication tasks.

The interaction between the system and the environment
may be represented by external events, which must be con-
sidered when reducing the power consumption. It is also
important to consider the state of computation when the system
turns on/off components to reduce power. The state of the
computation in each period of time represents the state of the
application and its restrictions in an instant of time, which
can have a direct influence on the decisions made by a power
manager.

Although energy minimization of embedded and mobile
computing is of great importance, energy consumption must
be carefully balanced against the need for real-time respon-

siveness. And more important than the power, delay, or even
energy is the relation between energy and delay (E x d), once
it represents the energy that is spent executing a task.

A power manager task can act in a system by turning off
components or adjusting the QoS parameters according to the
state of the computation, without harming its timeliness. As
an example we can mention an application for remote cardiac
monitoring system. In this case it is very important not to
interrupt the monitoring function when an abnormal condition
is detected, even if the battery power level is critically low.

In this work we proposed a dynamic power management
model for a communication intensive real-time embedded
system based on systems’ quality of service (QoS). This model
considers the application’s constraints and the environment
for the implementation of a dynamic power manager. QoS is
defined as a function of the battery power level and the need
for system responsiveness (here captured by the computation
state) at an instant of time. We propose a model of an Extended
Power State Machine (EPSM), where we adapt a Power State
Machine to include the state of an embedded program in
the power state machine formulation. This EPSM model is
used to adapt the Quality of Service (QoS) in communication
intensive devices to ensure low power consumption. The
model implementation was done through the development of
a middleware layer that incorporates a power state machine
and executes as a thread independent of the application.
The middleware layer hides the difficulties deriving from the
combination of diverse applications implementing the same
power management model, once it may control the hardware
accesses from all applications. We have also developed a
graphical tool where the Extended Power State Machine is
defined and the code for the middleware layer is generated. A
real application where the model was applied is also presented
in this paper.

This paper is organized as follows. In Section II we talk
briefly about our motivating example, a wearable computer
based physiological signal monitoring, which is presented
in detail as a case study in Section IV. In Section III we
first define some basic concepts and present a new model
proposition based on Power State Machines, and show the
architecture of an implementation through a middleware layer
supporting the EPSM, presenting also a tool created to gen-
erate the middleware code for both client and server sides
of the application. In Section V we present a case study of
power consumption reduction in a wearable computer. Finally
we present our concluding remarks in Section VI.

II. MOTIVATING EXAMPLE

The Wearable Project has been developed at the Computer
Engineer Laboratory at the Computer Science Department of
Universidade Federal de Minas Gerais and it is our motivating
example. The prototype consists of a wearable computer
working as a remote physiological signal monitoring system
connected to a personal computer (PC) through a wireless
network link.

A wearable computer is a low size mobile computer that
is subsumed into the personal space of the user, controlled
by the user and always on and accessible [17]–[21]. Wearable
computers are proactive, which means they send information to
its user/another system even when not requested. They usually
do not have displays or keyboards and communicate with other
computers through a wireless network interface.

We may define a wearable computer as a communication
intensive embedded system, responsible, most of times, for
the execution of real-time tasks. Wearable computers have
been applied in diverse areas of medicine like artificial organs,
monitoring, simulations, and as accessory sensors. Wearable
computers have been proposed a long time ago [18]; however,
its applicability has faced problems related to the dimensions
of the computer and its components, and weight, especially
when we consider battery dimensions [13]. Applications in-
volving wearable computers are limited by problems related to
power consumption, such as battery size, weight and lifetime.
Many authors have addressed this problem from a hardware
point of view, trying to minimize power consumption of
individual components. We can also find in the literature some
works related to battery technologies, which try to reduce the
battery size and weight while increasing its capacity. The use
of batteries as a source of energy in wearable computers should
be compatible with human usability and mobility; and it should
avoid health problems, such as problems related to battery
weight or heat. These improvements are important since we
have a trade-off between processing and battery lifetime.

In the Wearable Project, more specifically, we faced some
problems related to a high power consumption implying the
use of big and heavy batteries. These batteries had, sometimes,
the same size of the whole system. Special clothes for carrying
the monitoring system were developed and the necessity of
power consumption optimization was clear. In this sense, some
aspects should be observed, such as the real-time constraints
imposed by the application and an intensive communication
between the wearable computer and the fixed unit (PC). We
noticed also that the transmission rate and the maximum
transmission time available for a transmission in each instant
of time vary according to the physiological signal that is being
transmitted; and all this information can be used to optimize
the power consumption.

III. A NEW APPROACH TO THE REAL-TIME EMBEDDED

SYSTEMS POWER MANAGEMENT PROBLEM

Reducing the power consumption of mobile systems is one
of the greatest challenges for researchers. The increasing use
of mobile computers accentuated problems related to power
consumption, such as battery size, weight and lifetime. And, as
shown in the previous sections, several researches have been
developed on low power hardware and software, and power
management policies were also proposed.

However, when we are dealing with communication in-
tensive real-time embedded systems, the real-time constraints
are not considered in the propositions found in the literature,
although they cannot be neglected. When we add low power

constraints to real-time embedded systems, it is necessary
to consider the state of the computation when the system
turns on/off components to reduce power. The state of the
computation represents the application state in an instant of
time, which can be mapped as the quality of the service
provided by the application in each instant of time. Even
more, the state of the computation in each period of time may
influence the decisions made by the power manager, once the
decision to turn on/off a component must be taken according
to the application needs.

It is necessary to have the application and the power man-
ager in tune in order to optimize the whole system. Although
energy minimization for embedded and mobile computing is
of great importance, energy consumption must be carefully
balanced against the need for real-time responsiveness.

As an example we can mention our application for remote
cardiac monitoring. In this case it is very important not to
interrupt the monitoring function when an abnormal condition
is detected, even if the battery power level is critically low.

None of the approaches described previously addresses the
problem of adjusting the QoS for real-time embedded system
according to the state of the computation, once it should be
considered in such systems. In real-time embedded systems, it
may be more important, for example, to maintain a consistent
communication link (even if for a shorter period of time)
than reducing the power consumption to save energy. A power
manager task can act in a system by turning off components
or adjusting the QoS parameters according to the state of the
computation, without harming its timeliness.

This is the main idea of the concept developed in this work,
and will be fully explained in the following.

Communication intensive real-time embedded systems are
systems that depend on an efficient communication link for
the accomplishment of the system’s main tasks, which must
be done under real-time constraints. Although energy min-
imization for embedded and mobile computing is of great
importance, energy consumption must be carefully balanced
against the need for real-time responsiveness. In this scenario,
one can notice that the indiscriminate use of the power
management policies already proposed can take to undesirable
results.

This work considers a power management policy that turns
on/off components of an embedded system in order to reduce
the power consumption. The decision of when components
should be turned on and off is taken first according to the
state of the computation, and then according to the battery
charge state. When we are dealing with real-time embedded
systems, the state of the computation in each period of time
can have a direct influence on the decisions made by the power
manager.

A. Power State Machine

According to the work presented in [4], a Power State
Machine(PSM) is the representation of a power manageable
component (PMC) by a finite state machine. We can model a
system that implements dynamic power management as a set

of manageable interactive components controlled by a power
manager (PM). A manageable component can be described
as an indivisible block of the system and the granularity of
this definition is arbitrary, i.e., it can be as simple as a micro-
controller functional unit or as complex as a circuit board. A
fundamental characteristic of a manageable component is the
availability of multiple modes of operation associated with
different performance and power consumption.

Each one of the PSM states is related to a manageable
component mode of operation, representing an instance that
spans the power-performance trade-off. It means that we can
reduce the power consumed by a component by going to a low
power operating mode (low power state) whenever possible,
what affects the system’s performance. State transitions have
a power and a delay cost and they are triggered according to a
pre-defined power management policy. In general, low-power
states have lower performance and larger transition latency
when compared to higher power states. By this way, the
process of shifting between modes must be coordinated, once
the power saved in the low power state must compensate the
power and time spent in the transition. This abstract model can
be applied to processors and memories, as well as for devices
such as disks drives, wireless network interfaces, display and
others.

RUN

SLEEPIDLE

Wait for interrupt Wait for wake-up event

-90us

-10us 160ms

-10us -90us

P=400mW

P=0.16mWp=50mW

Fig. 1. Power State Machine for the StrongARM AS-1100 processor

Taken from [4], Figure 1 is the PSM model of the Stron-
gARM AS-1100. Each state in the machine is marked with
power dissipation and performance values, and edges are
marked with transition times. The power consumed in the
transitions is approximately equal to that in RUN mode. Notice
that both IDLE and SLEEP states have null performance, but
the time spent to exit the SLEEP state is much higher than
to exit the IDLE state. However, the power consumed by the
chip in SLEEP state is much smaller than in IDLE.

Considering the power machine shown above, one can
notice that choosing a management policy is an important
task, since it has to foresee the period of time that will be
spent at the SLEEP state and the power that will be saved
in each situation, which must compensate the time spent
and power consumed in the transition between the RUN and
SLEEP states. The decision to enter a low power state must be
well balanced, and can help reducing expressively the power
consumed by the device.

B. Extended Power State Machine concept

Although it is correct to map a power management imple-
mentation through a power state machine (PSM) in general
purpose devices, such as notebooks and palmtops, this PSM
model is inappropriate or incomplete when it is necessary to
consider the state of the computation in each period of time.
In real-time systems, for example, the process of choosing the
power management policy to be applied by a power manager
can be useless if it disturbs the timeliness imposed by the
real-time application. In these types of systems, the power
management policy used must consider the computation state,
which is defined through changes in the system’s internal
state caused by external events. The decision of turning a
component on or off must consider how important the task
that is being executed is. So, the representation using a PSM is
incomplete when applied to real-time systems, once transitions
between states may consider not only on the battery level, but
also on the computation state and external events.

Thus, it is necessary to extend the definition of a PSM,
which we will denominate Extended Power State Machine
(EPSM), which considers the state of the computation in its
power save decisions. An EPSM differs from a PSM in the
following aspects:

1) We call events changes in the state of the computation
in a period of time or in battery capacity;

2) The previous knowledge of the states of the computation
that cause a transition, in conjunction with the power
consumption in specific situations determines the states
and transitions of the state machine;

3) We will be considering communication intensive de-
vices, mainly those where information exchange with
environment is performed with real-time constraints. As
a consequence, we will define, for each system state, a
quality of service based on the information exchange.

Definition 1 (EPSM): Let M = (Q, E, qo, δ, QoS) be an
Extended Power State Machine, where:
Q is the set of states associated with a previously defined
QoS level that is required for a given system condition, i.e.
the system’s computation state; E is the alphabet of events.
It can be battery events or even external events that change
the states of the computation; qo is the starting state; and δ
is the set of transitions defined as δ ⊆ Q × 22E → Q, where
the expression 22E

represents logic expressions on power and
system’s events.

QoS is the degree of quality associated to the volume of
information that is being transmitted or received for each
variable that is communicated by the device.

The quality of service is mapped to the quantity of trans-
mitted/received information, defined as a function of the time
available for the transmission and the transmission rate. This
mapping can be represented by: QoS → (�×�)m, where m
variables should be transmitted at an adaptive rate (�) inside
the maximum period of time (�).

Thus, it is possible to turn off components when the
transmission ends before the end of the period of time, or

to distribute the transmission during the available period of
time even though it is made in a lower rate.

It is important to note that changes in the states of the
computation depends on the application and, as a consequence,
the events generated are defined according to it. We must
point out that applying power management techniques to hard
real-time systems may be, in some cases, impracticable, once
it may introduce an unacceptable delay or condition for the
system.

A graphical representation for an example of the EPSM
proposed above is shown in Figure 2 that defines states Q1,
Q2, Q3 and Q4, which represent common situations that map
states of the system and their respective QoS defined according
to the communication needs. For example we may have

Q = { (Q1 = No activity,QoS1), (Q2 = Low activity,QoS2),
(Q3 = Medium activity,QoS3), (Q4 = High activity,QoS4)}

QoS = {QoS1= no transmission, QoS2 = partial transmission
of data (few data), QoS3 = partial transmission of data (much
data), QoS4 = full transmission}

Fig. 2. Example of an EPSM of a military equipment

For each state the system will have a different configuration,
and changes in the system variables will influence each state
differently, i.e., the transitions from one state to the other are
triggered by different events, En, that lead to different states.
Transitions are represented in our example by δn.

δ ={δ1, δ2, δ3, δ4, δ5, ...} where
δ1 =Q1 × (E1 && E5) → Q1

δ2 =Q1 × (E2 && E5) → Q2 and so on.
Let us contrast the EPSM presented above with the PSM

of Figure 1. We can notice that in a PSM, the states represent
an operation mode of the system, which is associated to
system’s hardware configurations. In an EPSM, however, we
have QoS levels mapped directly by states, where different
hardware configurations are loaded according to the task that
is being executed. While transitions in a PSM are triggered by
a power management policy that is usually pre-defined, in an
EPSM, the decision of when changing from a state to another
is a combination of the battery power level and the system
computation state, which are both dynamic characteristics of

the system.
One scenario where this model applies consists of a portable

equipment worn by a soldier in a war, receiving data from
various sensors placed in the war environment and sending this
data to a control station. The application remains collecting
data from the sensors from time to time, and shutting down
idle subsystems such as the transmitter, can save a significant
amount of power in the system. However, we must remember
that the computation needs can also vary according to external
events, as for example, it is necessary to collect more data in
more dangerous situations, or even stop receiving signals when
the soldier is at the encampment. Thus, we define each state
by a soldier condition, which implies in less or more data
being collected from the environment. A soldier in combat,
for example, implies on collecting data with the best quality
possible. The detection of a bomb, for example, is a critical
task and should be done even though the battery level is low.
Battery events are also considered in the decision of which
data should be collected. For this example we would have:
• E = {E1, E2, E3, E4, E5, E6, E7, E8} where

E1 = resting E4 = in combat E7 = 25% battery left
E2 = walking E5 = 75% battery left E8 = 5% battery left
E3 = running E6 = 50% battery left

• QoS = {QoS1, QoS2, QoS3, QoS4} where

QoS1 = {1 data collection/0.5 h, moving sensors turned on}
QoS2 = {1 data collection/7 min, 1/3 of the sensors turned on}
QoS3 = {1 data collection/minute, 2/3 of the sensors turned on}
QoS4 = {1 data collection/5 secs, all sensors turned on}
In the motivating example presented in Section 3, we may

have the wearable computer collecting physiologic signals
such as the electrocardiogram, blood pressure and blood
saturation of oxygen in a patient during his daily activities. In
this sense, the wearable computer works as a communication
intensive real-time system, where the transmission rate and
the maximum transmission time available for a transmission
in each instance of time vary according to the physiological
signal that is being transmitted. For each signal, it is possible
to transmit an amount of data in the beginning of the period
available for transmission and turn the communication inter-
face off when data is not being transmitted. This optimization
allows a reduction in the power consumption and can also be
implemented by an EPSM.

IV. MODEL IMPLEMENTATION THROUGH A MIDDLEWARE

LAYER

Considering a communication intensive application that
consists of a server and a client exchanging data through
a wireless link, a middleware layer was developed imple-
menting a power management policy while controlling the
applications access to hardware and software. The middleware
intercepts the data exchanged between the application and the
communication interface and adapts it according to a power
management policy. The middleware layer is incorporated in
both client and server, once the data transmission is processed
according to the power management policy. This approach
is interesting since the presence of a power manager in the

system is transparent to the user, although it demands an
adaptation from the application side.

The development of a middleware layer simplifies the
application’s implementation, since it does not have to take
care of the power management tasks nor worry about other
applications that could be accessing a hardware that it is trying
to turn off. Figure 3 shows how a middleware layer fits in
the system architecture. The dashed line represents the use
of a wireless communication interface in the communication
process between the mobile unit and a fixed unit. The use
of a mobile unit and a fixed unit is just an example and
might be extended to other combinations of mobile and fixed
units. Our choice for a mobile and a fixed unit was based
on our motivation example and it expresses clearly the power
management problem present in mobile units of all kinds.

MOBILE UNIT (MU)

FIXED UNIT (FU)

APPLICATION MU

MIDDLEWARE

MIDDLEWARE

APPLICATION FU

Fig. 3. The insertion of a middleware layer in the system’s architecture

As just explained, the middleware layer is responsible for
intercepting the data communication and implementing the
Extended Power State Machine. Although all of the control of
the state machine remains in the middleware, the application is
responsible for defining the EPSM structure to the middleware
according to the tasks executed at each application condition
or state, including the states and transitions.

A. System Architecture

The application defines the states of the state machine
and their respective QoS attributes and this state machine
is the core of the middleware. The application defines also
the transitions, indicating, for each transition, a condition
test function and the next state it takes in the state ma-
chine if this condition is satisfied. Thus, the middleware is
responsible for controlling the transitions between states and
sending/receiving data to/from the communication interface
according to some state QoS.

Some concepts were defined for a better understanding of
the system’s architecture and they are just presented:
• Data buffer: a data buffer is a shared data structure used

for the data exchange process. The application writes data to
data buffer while the middleware reads data from the data
buffer. This read/write access is controlled through the use of
mutexes.
• Data block: a data block consists of a set of data

grouped according to its transmission rate and maximum
transmission time characteristics, on which will be applied
the same procedures for data transmission and storage. For
each data block we have one data buffer associated, and
all the data for that data block is transmitted using this

data buffer. Also associated with a data block we have data
map functions, which are application-defined functions that
provide an adjusting mechanism for the transmitting rates. For
example, an application may be filling the data buffer in a
higher rate than the middleware is capable to send data to
the communication interface. In this case, an adjustment is
necessary, such as a medium, an intermediary value, or other,
according to the application needs. The data map function
is responsible for applying this adjustment. These functions
could also do some kind of backup, like saving not transmitted
data in a file for posterior analysis.
• State: a state of the state machine can be defined as a

group of data blocks with different transmission times and
transmission rates that indicate how the data in their respective
data buffers must be sent to the communication interface. We
have also associated to a state a list of transitions to be tested
and executed.
• Transition : a transition consists of a pointer to the next

state and a transition test function, which is defined by the
application as a condition test function (callback routine).

S'

S''

S'''

f ()

g ()

h () = I

T2 () = (...)

A

A'

T1 = (a > 0 && b < 3)
T2 = (...)

T1 = (a > 0 && b < 3)

MIDDLEWARE

APLICATTION

Fig. 4. Schematic of the interaction between an application and the
middleware

A schematic of the interaction between the application and
the middleware - that is present in both client and server sides
– and the application is shown in Figure 4 and can be described
as follows:

1) The application requests the creation of data buffers
for shared access. These buffers will be the place
where the application will write the data instead of
sending it directly to a communication interface. They
are represented in Figure 4 by A. Here, it is important
to highlight the fact that it is the middleware who
defines the data structure, of course, according to the
application’s specification (buffer size, etc).

2) The application creates a state informing its transmission
rate and maximum transmission time. S′, S′′ and S′′′

represent the states in Figure 4. Recall that the QoS
is mapped to the quantity of transmitted/received infor-
mation, defined as a function of these two parameters
applied to m variables. For each state we can have
different blocks of data, each one with a distinct QoS
requirement and associated with a different data buffer.

3) The application may inform data mapping functions for

each data block, which will be responsible for adjusting
the data read from the data buffer to the data sent to the
communication interface, providing always consistent
data. These functions are represented in Figure 4 by f
(), g () and h (). As an example we can mention
the situation where an application fills the data buffer
in a rate that is different from the transfer rate. In
this case, a data map function could be a function that
reads X entries of the buffer and returns the medium
value of these entries. The decision about what will be
transmitted or what to do with data that is not transmitted
is taken by the data map functions. In Figure 4 we have
h () = I, which represents the standard situation, where
all data put in the buffer by the application will be sent
to the communication interface.

4) Finally the application may define the transitions be-
tween states, indicating the next state to transition to
if a condition test function is satisfied. The result of a
condition test function is determined dynamically by the
application through the execution of a callback routine,
which will inform the middleware about its occurrence.

The transition function was implemented as a callback
function once it is defined and executed by the application,
which identifies the occurrence of events that trigger a tran-
sition and notifies the middleware about the occurrence of
an event. Once the state machine is defined, the application
and the middleware start exchanging data through the data
buffer, and the middleware also reads/writes data from/to the
communication interface.

B. System Modeling and Implementation

In the implementation of the whole system, which com-
prehends the middleware and the application explained previ-
ously, some important concepts such as multi-threading and
object orientation were applied, allowing the development of
a modular middleware.

The multi-threading concept allows multiple programs to
be loaded into memory and to be executed concurrently,
and this requires a firmer control on them. A thread shares
with peer threads its code section, data section and operating
system resources, but like any parallel processing environment,
multithreading a process may introduce concurrency control
problems that require the use of critical sections or locks.

The necessity of having a shared data buffer for the mid-
dleware and the application, with different program counters,
register sets and stack spaces, implied in the use of multi-
threading. We may highlight that we could use other ap-
proaches, like pipes or files, which would be inefficient in our
case. So, we defined two threads accessing the same address
space, and using semaphores to deal with the concurrent access
in the data buffer. When the application thread is accessing the
data buffer, it blocks it, preventing a middleware read/write
access. Meanwhile, the middleware thread can process other
tasks if it does not need to access the data buffer at exactly
the same time. We defined also semaphores indicating if
the buffer is full or empty, which are shared between the

two threads. Thus, the implementation of the application and
the middleware with multi-threads was the best solution for
the multiple accesses in the data buffer, implying in the
implementation of a lock policy to control this access.

The object-oriented concept was also adopted in the de-
velopment of the middleware layer. The development process
of real-time and embedded systems [21] may be guided by a
development methodology as happens with the development of
common software. In this sense, we explored the advantages
provided by an object-oriented methodology, such as reuse
and scalability. The UML (Unified Modeling Language) is
particularly suited for real-time embedded systems project and
development and its use provided a clearer vision of the whole
system.

Representing the system’s functionalities through a use case
diagram allowed a better definition of the system’s boundary
and the interaction process between the application and the
middleware, simplifying the specification and implementation
of the whole system. From the definition of use cases, we
produced the class diagram, which represents the structure of
the system in terms of classes and objects, including how the
classes and objects relate with each other. With this facility
in hands it was possible to develop a code generator for the
middleware layer, which creates the skeleton of code for the
middleware from the state machine specification.

C. Software Developed – Middleware Code Generator

Once the middleware layer was developed using object-
orientation concepts, the use of a code generator is easier and
brings a large number of advantages such as an increase in the
productivity in the development of applications that implement
the power state machine proposed.

The middleware code implements the EPSM defined by the
application, and a tool to generate this middleware code is
useful and helps increasing the efficiency in development of
such applications.

Fig. 5. Middleware Code Generator Tool

The developed tool allows the drawing of a State Machine,
including the definition of states and transitions, and generates
the code for both the client and the server. As highlighted
before, the state machine must be implemented in both client

and server sides, once the data is processed in one side (by a
data map function) and must be understood by the other side.
It is possible to define state names and transition times and
conditions, representing the transition functions defined by an
EPSM. The tool allows the configuration of every parameter
needed in the code for the client and server.

The tool was developed with Java, maintaining its portabil-
ity and oriented object paradigm, and a user-friendly graphical
interface for a quick development. The code generated by the
tool is in C++ and implements the same state machine for the
client and server sides of the middleware. Figure 5 presents
the tool interface, where an example state machine composed
of two states q0 and q1 and a transition between these two
states has being drawn.

The generated code allows a transparent implementation of
a power manager for the application, and a high reuse of the
middleware code.

D. Tests and Results

The model idea was first evaluated through the development
of simple applications that were responsible for turning on
and off the wireless communication interface of a wearable
computer. For each operation we took the time and the
power spent in the process. We also measure the power spent
transmitting different volumes of data, and we could see that
turning the interface off when idle and turning it back on after
a pre-determined period of time would save energy (Figure 6).

Maximum Transmission Time

Transmitting

Turning OFF Turning ON

Turned off

Fig. 6. Turning a wireless interface OFF to save energy

A pre-defined slot of time was used once we were dealing
with small packets of data, and the transmitting process
of small and large volumes of data (up to the maximum
bandwidth) spend almost the same amount of power. This
happens since the main power cost is concentrated in turning
the interface ON, operation that is necessary for both small
and large amounts of data. By this way, for a transfer rate
of 600bytes per second, for example, we determined that we
would send 6000bytes in 10 seconds and, as the transmission
was concentrated in the first microseconds, we would turn the
interface off in the rest of the period. For each state, the power
saved is given as a function of the time the interface card stays
turned off.

A second step consisted in the implementation of the
middleware layer, which would be responsible for controlling
the EPSM autonomously. The middleware layer implements
the capabilities to turn the communication interface ON and
OFF and controls also the data that is sent through it. With
the middleware layer we could test effectively the concepts
and ideas defined previously. Next, a case study is presented

as an example of an implementation of the concepts explained
in previous sections to a real application.

V. CASE STUDY: POWER CONSUMPTION REDUCTION IN A

WEARABLE COMPUTER

The Wearable project has been created at the Computer
Engineer Laboratory at the Computer Science Department of
Federal University of Minas Gerais. The prototype consists of
a remote physiological signal monitoring system operating on
a wireless network. Wearable computers have been applied in
diverse areas of medicine like artificial organs, monitoring,
simulations and as accessory sensors. One of the greatest
limitations of its application is the size of components and
weight, especially when we consider battery dimensions [13].

The system is a battery powered mobile device with network
communication capability. The equipment is composed by two
hardware modules. The first one is an acquisition system
that receives analog data from physiological sensors. The
second module is a 486 DX 100 MHz microprocessor, running
embedded Linux and a wireless Ethernet device based on
802.11b. This second module is shown in Figure 7. This
processing module receives data from the sensors, classifies
it and transmits the data to a central station that can be any
computer connected to the network [19].

Fig. 7. Data processing module

Acquiring vital signals from a patient in movement is an
operation that requires peak performance only during some
periods of time. In this way, the system’s components do not
need to be active all the time. The capacity of turning on and
off components or even adapting the performance to the user’s
requests is important functionalities for mobile applications,
once we are tied to power constraints.

A critical factor that influences the system’s performance is
the power consumption. The CPU and the wireless network
interface card are the great power consumers. Because of
this, the application above is an interesting example where
we can apply the dynamic power management concept based
on EPSM formulation. It is possible to perform a dynamic
reconfiguration of the system in order to provide the required
service with the previously defined QoS. This adaptation
of QoS is based on changes in the battery charge and in
the state of the computation during a period of time. The

implementation of the proposed model requires a previous
evaluation of the system functionalities to determine the power
states and the corresponding changes in QoS.

Table I shows an example of a set of sensors for the
remote physiological signal monitoring system, along with
the QoS acceptable limits. The wearable project implements a
set of these functionalities: electrocardiogram (EKG) with up
to three channels, heart rate, pulse oximeter and non-invasive
blood pressure.

We defined the following order to turn the sensors off,
although it can be changed in specific situations: 1. Body
position; 2. Phonocardiogram; 3. Electromyogram; 4. Bio-
chemistry markers; 5. Temperature; 6. Gas CO2; 7. Gas O2; 8.
Respiratory Volume; 9. Respiratory rate; 10. Blood Pressure;
11. Pulse Oximeter; 12. Electrocardiogram; 13. Blood Flux.
According to the clinical importance of the monitored signals,
the following power saving procedure is used:

1) Progressively reduction of redundant sensors;
2) Progressively reduction of signals sampling rate until the

minimum acceptable limit;
3) Progressively turn the sensors off. The power con-

sumption saving procedure will decrease not only the
processing work, but also the volume of data transmitted.

Note, however, that the specific power saving conditions
are related to the computation state, which in this case is
the patient condition evaluation. This evaluation must be
performed either by an external event (the patient signals
the system that he/she is not feeling well) or by carefully
examining the patient data (either remotely or by the wearable
system itself). Depending on the patient’s condition, we can
also decrease the sampling rate and number of sensors if
the patient is in a healthy situation, and if there are no
abnormal signals. In situations where an event occur or any
abnormal signal is detected, the monitoring task should be
performed with the maximum quality available necessary for
the correct event identification by a physician, independently
of the battery charge at that time.

Situations like these show how important it is to include
the state of the computation in the model of dynamic power
management for real-time embedded systems.

In the system described here, for an EKG monitoring
device, we can identify three different monitoring states: (A)
Minimum patient monitoring; (B) Partial patient monitoring;
and (C) Maximum patient monitoring with the best possible
signal quality.

In Situation (A), the EKG sensors will capture the data using
one channel and a sampling rate of 300Hz. According to a
local evaluation of the condition, the EKG is transmitted with
a lag of 30 seconds, with power consumption being traded
against system responsiveness. Situation (B) requires a more
responsiveness for data capture process. It uses three channels
and a sampling rate of 300Hz. More channels are necessary for
better characterizing an abnormal EKG wave. In this situation,
a specialist is necessary most of the time to analyze the waves,
and as a result, transmission lag time is reduced to 5 seconds
(internally). Situation (C) is a high risk situation where the

TABLE I

SIGNALS CHARACTERISTICS, DATA FLUX AND TRANSMISSION POWER CONSUMPTION

Signal Sample
size
(bits)

Frequency
(Hz)

Frequency
variation
acceptable (Hz)

Number of
Sensors

Data Flux (bits/min)
based on normal sensors
and frequency bounds

Transmission Power
Consumption based on
Data Flux (J/sec)

EKG Static 16 1000 300 to 1000 2 to 16 7,680,000 bits/6sec 10,437
EKG Dynamic 16 1000 300 to 1,000 2 to 10 9,600,000 13,046
BP Non-invasive 8 0.01 ≤ 1 1 4,8 0.000006
BP Invasive 16 40 40 to 100 ≥ 1 38,400 0.05
Pulse Oximetry 4,800 1 ≥ 1 1 288,000 0.39
Blood Flux 16 40 ≥ 40 ≥ 1 38,400 0.05
Respiratory Rate 16 100 ≥ 100 1 to 3 96,000 0.13
Respiratory Volume 16 100 ≥ 100 1 to 3 96,000 0.13
Body Position 8 1 ≤ 0.1 ≥ 6 2,880 0.004
Gas O2 8 0.1 ≤ 0.1 ≥ 1 48 0.00005
Gas CO2 8 0.1 ≤ 0.1 ≥ 1 48 0.00005
Biochem Markers 8 0.1 ≤ 0.1 ≥ 1 48 0.00005
Phono-cardiogram 16 1000 500 to 1,000 ≥ 1 960,000 1.3
Electro-myogram 16 500 300 to 500 ≥ 3 1,440,000 1.957
Temperature 8 0.01 ≤ 0.01 ≥ 1 4.8 0.000006

patient’s clinical situation needs almost all the signals with
the best quality at real-time. In this case, it will be necessary
to use more channels (12) and a sampling rate of 1000Hz (high
resolution EKG). In this case will transmit the data at every
second.

Note that when we discuss real-time responsiveness in this
example, we are considering only the device’s communication
delays. In reality, Internet based devices suffer from all kinds
of network traffic delays that are not considered in this paper.
These delays are one of the reasons why the system requires
enough intelligence to make local decisions when no response
from a medical monitoring team is available in reasonable
time.

The triggering events that will transition the system into
its different monitoring states are the following: patient with
no previous disease identified; patient with a low-risk disease;
patient with a middle risk disease; and patient with a high-risk
disease.

These events are based on the initial physician’s evaluation
of the patient’s condition and they are modified according the
patient’s clinical evolution.

TABLE II

MONITORING QUALITY ACCORDING TO PATIENT’S CLINICAL STATE

Quality of Monitoring Min
(%)

Partial
(%)

Max
(%)

Comm.
Power
(mW)

Patient w/o disease (healthy user) 97 2.9 0.1 71.00
Patient w/ a low risk disease 95 4.75 0.25 78.70
Patient w/ a middle risk disease 40 59.5 0.5 248.45
Patient w/ a high risk disease 30 65 5 327.67

Considering each one of these classifications, we can as-
sociate the presence of events to the patient’s necessity of
monitoring. This association can be used to calculate the
probability of an event occurrence and the probability of
changing the monitoring parameters in a period of time.

In a period without disease, for example, the patient can be
monitored 97% of the time using the minimum configuration
and 0.1% using the maximum configuration. In a period where
the patient is in a high risk situation, it will be necessary
to use the minimum configuration in 30% of the time and
maximum configuration in 5% of the time. Table II presents
the correlation between the amount of time spent with each
type of monitoring state, according to the patient’s clinical
condition and potential risk of disease.

As shown in Table II, it is possible to save power by
changing dynamically the monitoring state of a patient. In this
way, it is possible to change the QoS for the communication
parameters and also turn off the network interface when it is
not in use. These operations contribute to reduce the power
consumed in communication and processing. The state of
the computation indicates when changes in the monitoring
configuration can be performed. Changes in the states of
the computation are identified by a previous data processing
executed over data sampling. The indication of the patient
initial risk level is determined previously by a specialist. The
patient condition may change and will be defined by a software
tool based on an agent that analyses the patient data.

In Figure 8 we have the representation of the EPSM model
for the medical device explained before. We can notice that the
high power consumption can be avoided if we have a patient in
good health conditions, which accounts for most of the time.
It is important to emphasize that the values shown in Table
II can be fine tuned in order to get better results according
to the application that is being executed. The representation
through an EPSM lets us identify the important events, based
on the state of the computation that will really influence the
transitions between states.

Considering patients with different health conditions, there
will be different monitoring conditions that will allow lower
and higher power savings. For example, considering a patient
with no previous diagnosis of a disease, he can be monitored

A

C

B

P = 60.8 mW

P = 1450mWP = 364.5mW

High Risk Event

Low Risk Event

No Event No Event

Low Risk
Event

High Risk
Event

Fig. 8. EPSM for an electrocardiogram monitor

with a minimum data-collecting rate, at 97% of the time, and
be partially monitored at 3% of the time. The graph in Figure
9 shows how is the power consumption for this monitoring
condition. The peaks of power consumption occur when the
communication interface is turned on, and the straight line
represents the medium power consumption.

0

0,1

0,2

0,3

0,4

Time (s)

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

A
)

Time(s)

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
(A

)

Fig. 9. Power consumption vs. Time for a patient monitoring

A 4AH battery was used for testing and it was verified that
when not implementing any power management technique, the
battery lifetime was about 8hs, while using the power manager
as proposed, the battery lifetime almost duplicates (about 15
hs); in both situations transmitting one channel at 300Hz.

VI. CONCLUSIONS AND FUTURE WORK

In this work we proposed a model to achieve low power
consumption in real-time embedded systems based on dynamic
power management, where the state of the computation is as
important as the battery capacity. The formulation was called
an Extended Power State Machine (EPSM), where the states
of an EPSM depend on the embedded program’s state, and the
transitions depended on external events. Power consumption
was reduced based on adapting the quality of service for
the variables that were communicated between a mobile and
a fixed unit (monitoring station). Each state of the system
required a different QoS.

A case study was presented for a medical wearable de-
vice that considers the patient’s state when deciding upon
the quality of service and responsiveness for the sensors’
data transmitted over a wireless network. We showed that
significant power reduction in communication was achieved
when this technique was applied. The EPSM was designed as

a multi-thread application comprising the medical application
and a middleware layer, which implements the EPSM. The
solution adopted on designing a middleware layer facilitates
the implementation of further applications.

ACKNOWLEDGMENT

This work has been partially supported by CNPq, Brazil,
under process 55.2111/2002-3.

REFERENCES

[1] P. A. Laplante, Real-Time Systems Design and Analysis, I. Press, Ed.,
1997.

[2] W. Wolf, Computers as Components - Principles of Embedded Comput-
ing Systems Design. Morgan Kaufman Publishers.

[3] P. Havinga and G. Smit, “Design techniques for low power systems,”
2000. [Online]. Available: citeseer.nj.nec.com/havinga00design.html

[4] L. Benini, A. Bogliolo, and G. D. Michelli, “A survey of design
techniques for system-level dynamic power management,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 0, no. 3,
June 2000.

[5] T. Simunic, L. Benini, P. W. Glynn, and G. D. Micheli,
“Dynamic power management for portable systems,” in Mobile
Computing and Networking, 2000, pp. 11–19. [Online]. Available:
citeseer.nj.nec.com/simunic00dynamic.html

[6] L. Benini, G. Castelli, A. Maci, and R. Scarsi, “Battery-driven dynamic
power management,” IEEE Design and Test of Computers, vol. 18, no. 2,
pp. 53–60, March/Abril 2001.

[7] S. Havinga, “A survey of energy saving techniques for mobile comput-
ers,” 1997. [Online]. Available: citeseer.nj.nec.com/smit97survey.html

[8] G. F. Welch, “A survey of power management techniques in mobile
computing operating systems,” Operating Systems Review, vol. 29, no. 4,
pp. 47–56, 1995. [Online]. Available: citeseer.nj.nec.com/42641.html

[9] J. R. Lorch and A. J. Smith, “Software strategies for portable computer
energy management, Tech. Rep. CSD-97-949, 13, 1997. [Online].
Available: citeseer.nj.nec.com/lorch98software.html

[10] K. Li, R. Kumpf, P. Horton, and T. E. Anderson, “A quantitative
analysis of disk drive power management in portable computers,”
in USENIX Winter, 1994, pp. 279–291. [Online]. Available:
citeseer.nj.nec.com/li94quantitative.html

[11] C. H. Hwang and A. C. Wu, “A predictive system shutdown method for
energy saving of event-driven computation,” P. I. C. C.-A. Design, Ed.
IEEE CS Press, 1997, pp. 28–32.

[12] J. Lorch, “A complete picture of the energy consumption
of a portable computer,” 1995. [Online]. Available: cite-
seer.nj.nec.com/lorch95complete.html

[13] M. Bhardwaj, R. Min, and A. Chandrakasan, “Power-aware systems,”
in 34th Asilomar Conference, November 2000, invited Paper.

[14] R. P. Dick, G. Lakshminarayana, A. Raghunathan, and N. K. Jha, “Power
analysis of embedded operating systems,” in ACM, 2000, pp. 312–315.

[15] V. Swaminathan and K. Chakrabarty, “Real-time task scheduling
for energy-aware embedded systems,” 2000. [Online]. Available:
citeseer.nj.nec.com/375160.html

[16] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
cpu energy,” in IEEE Annual Foundations of Computer Science, 1995,
pp. 374–382.

[17] R. W. Picard and J. Healey, “Affective wearables,” The Media Labora-
tory, Massachusetts Institute of Technology, Cambridge, MA, MIT Lab-
oratory Perceptual Computing Section Technical Report 467, November
1997.

[18] S. Mann, “Definition of wearable computer,” May 1998, university of
Toronto.

[19] J. Conway, C. C. Jr., A. F. D.C. da Silva, L. Andrade, and H. Carvalho,
“Wearable computer as a multi-parametric monitor for physiological
signals,” in BIBE Biomedical Applications, 2000, pp. 236–242.

[20] T. Staner, S. Mann, B. Rhodes, J. Healey, K. Russel, J. Levine, and
A. Pentland, “Wearable computing and augmented reality,” The Media
Laboratory, Massachusetts Institute of Technology, Cambridge, MA,
MIT Media Lab Vision and Modeling Group Technical Report 355,
November 1995.

[21] B. P. Douglass, Real-Time UML Second Edition - Developing Efficient
Objects for Embedded Systems, A. Wesley, Ed., 1999.

