
Using a Distributed Snapshot Algorithm in Wireless Sensor Networks

Ana Paula R. da Silva
anapaula@dcc.ufmg.br

Fernando A. Teixeira
teixeira@dcc.ufmg.br

Rafael Kelles V. Lage
kelles@dcc.ufmg.br

Linnyer B. Ruiz
linnyer@dcc.ufmg.br

Antonio A.F. Loureiro
loureiro@dcc.ufmg.br

José Marcos S. Nogueira
jmarcos@dcc.ufmg.br

Federal University of Minas Gerais
Department of Computer Science

Belo Horizonte, Minas Gerais, Brazil

Abstract

Wireless Sensor Networks (WSNs) have particular char-
acteristics that do not allow to apply traditional distributed
algorithms directly to them. In this work we adapt the algo-
rithms Distributed Snapshot, Broadcast and Propagation of
Information with Feedback (PIF) to WSNs and apply them
to generate the Energy Map of a WSN. This map shows the
behavior of such a network and can be used to predict its
behavior. We simulate the algorithms proposed and show
their number of messages, energy spent and execution time.

1. Introduction

A Wireless Sensor Network (WSN) is a new type of
wireless communication network that can be applied in a
variety of scenarios such as environment monitoring, se-
curity, and medical applications. Sensor nodes in WSNs
are spread in a region to be sensed and they communicate
among themselves using wireless point-to-point communi-
cation forming an ad-hoc network. Sensors collect, process
and send data from the environment to others nodes. Ba-
sically, there are three different types of nodes: common
nodes that are responsible for collecting sensing data, sink
nodes that are responsible for receiving, storing and pro-
cessing data from common nodes and “gateway” nodes that
connect the sink nodes to external entities called observers
(final users). A wireless sensor node is composed by mem-
ory, processor, transceiver, battery, and one or more sen-
sors, that can collect different data types such as tempera-
ture, pressure, electromagnetic field, and chemical agents.
A sensor node can run a program according to its hardware
restrictions.

A WSN is different from a traditional computer network
in several aspects. Usually a sensor network consists of a
large number of distributed nodes, have energy restrictions,
and must have mechanisms for self-configuration and adap-
tation in case of a communication failure and node loss. It
means that traditional distributed algorithms, as a commu-
nication protocol and leader election, must be adapted for
this kind of environment before being used. An important
aspect in WSNs is to monitor the available energy in the
network since, in general, a node battery is neither replaced
nor recharged. It means that when the battery runs out the
node becomes unavailable.

In this work, we propose using a variation of the Dis-
tributed Snapshot Algorithm (DSA) [1] together with other
adapted algorithms, to obtain the global state of a WSN.
This global state was used to build the energy map, but can
be used for other applications as well. In the energy map
we can observe the energy decreasing, and, then, foresee
which nodes will become unavailable. With this informa-
tion, it is possible to do a better network configuration, or
even to intervene in an already installed network, to extend
its life time. The algorithms proposed here are for a “flat”
network – where there is no grouping or hierarchy and “ho-
mogeneous” – where all nodes have the same capability of
sensing and processing, as depicted in Figure 1.

The rest of this paper is organized as follows. Section 2
describes the Distributed Snapshot Algorithm and the chal-
lenges for its utilization in WSNs. Section 3 presents the
proposed modifications for the DSA algorithm and for the
broadcast and PIF (Propagation of Information with Feed-
back) [4] to obtain the network global state. Sections 4
and 5 present the simulations and results respectively. Fi-
nally, Section 6 presents our concluding remarks.

Sink node

Figure 1. An example of a flat and homo-
geneous WSN showing possible paths from
common nodes to a sink node.

2. Distributed Snapshot Algorithm for WSNs

The Distributed Snapshot Algorithm obtains a dis-
tributed system global state, that is, it records the consistent
state in a given moment. The algorithm deals with two in-
dependent distributed computations. The first computation
refers to the substrate, i.e., the system properties one wishes
to study, and the second one refers to the snapshot algorithm
itself. The only interaction between the two computations is
that the computation of the snapshot algorithm is able to get
information about the substrate in order to record the global
state of the system.

Some of the challenges when applying the Distributed
Snapshot Algorithm to obtain information from the sensors
in a WSN are energy consumption, dynamic topology, the
algorithm to collect the local states, and network fragmen-
tation.

Energy consumption is a critical problem in WSNs since
sensors depend on a battery source to work. In general, a
WSN is designed to last for as long as possible. Any activity
performed by a sensor consumes energy. In general, the
transmission/reception of a data spends more energy than its
processing. One goal of this work is to measure the energy
spent by the distributed algorithm itself when executing a
computation in a sensor node.

In a WSN, the topology tends to be dynamic even if the
nodes are fixed. The topology can change because nodes
can become unavailable temporarily or definitely. A node
is temporarily unavailable when there is a communication
problem or becomes suspended (inactive). A node is def-
initely unavailable when its battery runs out or it is de-
stroyed. These situations can affect the behavior of the DSA
since a node can only conclude its local snapshot when it re-
ceives markers from all its neighbors.

After the local state is recorded, it is necessary an algo-
rithm to collect these local states to obtain the global state
of the network (the network energy map in our application).

The use of this algorithm in WSNs is a challenge as much
as the DSA is since it must consume as little energy as pos-
sible.

The network fragmentation is closely related to the dy-
namic topology. If a node becomes unavailable, the network
may split and one part will no longer reach the other. This is
also a problem to the DSA. Furthermore, it raises a concep-
tual question: if there is an unreachable area, does it make
sense to keep trying to take snapshots of that region? The
answer probably depends on the underlying application.

3. Proposed algorithms

This section presents the proposed algorithms
DSA WSN, Broadcast WSN, and PIF WSN, that are
versions of DSA, Broadcast, and PIF for a WSN, respec-
tively. The original PIF (Propagation of Information with
Feedback) algorithm [4] builds a spanning tree having the
sink as the root.

Before discussing the energy spent by the DSA, Broad-
cast and PIF algorithms, we must make sure that these al-
gorithms will work correctly in a WSN. Considering the
problems discussed in the previous section, we present the
strategies applied to the DSA to continue working despite
the problems raised by the dynamic topology and network
fragmentation. We will also discuss the problems and ad-
vantages of using the Broadcast and PIF algorithms to col-
lect the local states. The energy spent by these algorithms
will be discussed in Section 5.

3.1. Dynamic topology

The sensors can become unavailable and the algorithms
mentioned above were not initially designed to cope with
this situation. Note that sensors can become unavailable
in different moments during the algorithm. Depending on
the moment this situation happens, it can be treated by the
algorithm in different ways.

There are three cases when a node becomes unavailable.
A node can become unavailable before the start of the DSA,
during the snapshot step and during the collecting step using
Broadcast or PIF. In particular, during the snapshot step, the
node can become unavailable in three different moments:
after receiving a marker and before sending this marker to
another node; after sending the marker and before record-
ing the local state; and after recording the global state. In
all these cases, the DSA will not be concluded. To make
the Distributed Snapshot Algorithm fault-tolerant, we have
created a special message called “death warning”. A node
sends the death warning to all its neighbors when it is close
to become unavailable. Depending on the moment that a
node becomes unavailable, the “death warning” can contain

the local state of the sensor. In this work we assume that the
node will become unavailable only due to lack of energy.

In our implementation, we have assumed that each node
knows the number of its neighbors. In our fault model, we
have assumed that messages are not lost. Of course, there
are situations that these propositions do not happen. How-
ever, it is certainly possible to imagine scenarios that is pos-
sible to make these suppositions, at least with a very high
probability.

The DSA WSN algorithm (DSA modified) works as fol-
lows. If a node dies before the beginning of the snapshot
its neighbors will interpret its death warning only as they
have one neighbor less. The snapshot algorithm will work
as usual. If the node dies during the snapshot algorithm and
its neighbors are waiting for a marker, then when a neigh-
bor receives a death warning it will remove the node that
has died from its list of neighbors and will decrement the
number of missing markers. Then it will go on with record-
ing its own local state. If the sensor dies after it has sent the
marker, the neighbor will remove this node from its neigh-
bors’ list. If the node dies after it has recorded its local
state, it will send this state (snapshot) with the death warn-
ing, therefore this information will not be lost with the node
death. If the node dies during the algorithm that collects the
local sates, the death warning will contain the local state of
the dead node and its neighbors will take it out from their
neighbors’ list.

The problem will be if the node is not able to send the
death warning. It can happen, for example, when it is ready
to send the death warning but it receives so many messages
that its energy is not enough to send it. To avoid this pos-
sibility, we assume that the sensor will always have the se-
cure level of energy, enough for it to send the death warn-
ing notwithstanding the number of messages that it receives.
With these adaptations, the modified DSA can work in wire-
less sensor networks even if the network splits.

Figure 2 presents the pseudo-code of the DSA WSN al-
gorithm adapted to WSNs.

3.2. Local states collecting and network fragmenta-
tion

Our second problem is how to collect and assemble the
local states, that is, the local snapshots, to have a global
state. In this work, the global state corresponds to a map of
the energy level in each node in the network in a given mo-
ment. We will call this map as “energy map”. We took
as baseline an algorithm based on the broadcast. When
each node has concluded its own snapshot, it sends a broad-
cast message with its local state (snapshot) to all its neigh-
bors. As one node receives the broadcast message with the
snapshot from a neighbor, it forwards this message to all
its neighbors as well. This algorithm finishes its computa-

ALGORITHM DSA WSN:
1. Sink node sends a

�
MARKER � msg;

2. if node � receives
�
MARKER � msg then

3. begin
4. if node � is not in SNAPPING mode then
5. begin
6. Change the local state to SNAPPING;
7. Record state;
8. Forward

�
MARKER � msg;

9. end;
10. if returning

�
MARKER � then

11. Decrease the number of waiting
�
MARKER � s;

12. if there is no more returning
�
MARKER � s to receive then

13. Local state is ready;
14. end;
15. if node � receives msg

�
DEATH NOTIFICATION � then

16. begin
17. Mark neighbor as dead;
18. if node � is in SNAPPING mode then
19. Treat

�
DEATH NOTIFICATION � as a

�
MARKER � ;

20. end;
21. if node � receives a “normal” msg from the network then
22. begin
23. if node � is in SNAPPING mode then
24. Save msg to build local state;
25. Process msg;
26. end;

Figure 2. Adapted Distributed Snapshot Algo-
rithm for WSNs.

tion when all nodes have received snapshots from the whole
network. The question is that only the sink needs to know
about the entire network. But as we consider the sink to be
fixed, we use the broadcast to convey the information to it.
We have used three different topologies in our simulation
in order to evaluate the energy consumption in getting the
global snapshot. These topologies will be shown in Sec-
tion 4.

Figure 3 presents the pseudo-code of the broadcast algo-
rithm adapted for WSNs.

The adapted broadcast, however, causes a problem. The
modified DAS continues working but the adapted broadcast
locks when the network splits. The neighbors of the dead
sensors know about their deaths, but their own neighbors
do not. Those will be waiting for the snapshots to come
from the dead nodes indefinitely. For the purpose of having
more global states we adopted a fault model that delays the
fragmentation of the network.

As an improvement of the collecting step we have imple-
mented the idea of PIF, as we have already explained. When
the sink finalizes its own snapshot, it sends a PIF message

ALGORITHM Broadcast WSN:
1. if Snapshot is finalized then
2. Nodes send their local states using � BROADCAST � msgs;
3. if node � receives a � BROADCAST � msg from node � then
4. begin
5. if it is the first � BROADCAST � msg received from � then
6. Node � sends msg to all its neighbors;
7. if node � is the sink node then
8. Store local state received in � BROADCAST � msg;
9. end;

10. if sink node received all local states then
11. Build global state;
12. if node � receives � DEATH NOTIFICATION � msg then
13. begin
14. Mark neighbor as dead;
15. if node � is in BROADCASTING mode then
16. Treat � DEATH NOTIFICATION � as a

� BROADCAST � msg;
17. end;

Figure 3. Adapted Broadcast for WSNs.

to all its neighbors. This message can be anyone and, in this
work, we call it a PIF message. The neighbor, that receives
the PIF message for the first time, considers the node that
has sent it as its parent and forwards a PIF marker to all its
neighbors with the exception of its parent. Behaving like
this a spanning tree is dynamically built. When the leaves
receive PIF messages from all their neighbors, they send
their own snapshots to their parents as a feedback for the
first PIF message. The other nodes, which are not leaves,
will receive the feedback messages with the snapshots from
their children. These nodes will join their own snapshots to
those of their children and send them to their parents until
the sink (root of the spanning tree) has the snapshot of the
complete network.

Figure 4 presents the pseudo-code for the adapted PIF
algorithm for WSNs.

In case of a network fragmentation, the PIF algorithm
still works. It is able to collect the snapshots from the
nodes that the spanning tree can still reach. In the PIF al-
gorithm, the number of messages exchanged in the network
is smaller than it is in the broadcast algorithm but messages
tend to be longer. Both the number and the length of the
messages can cause a higher energy consumption. We will
evaluate their effects in the next section, where we show the
simulation results. One possible solution for the problem of
message length is to perform some kind of data fusion as
the feedback messages move towards the sink node.

When the network fragments, the nodes on the side of
the split network that are not reached by a fixed sink can yet
conclude their local snapshots. If we have a mobile sink,
these local snapshots could be obtained.

ALGORITHM PIF WSN:
1. if sink node finalized snapshot then
2. begin
3. Sink node enters PIF mode;
4. Sink node sends � PIF � msg;
5. end;
6. if node � receives � PIF � msg then
7. if node � does not finished its local state then
8. Store � PIF � msg
9. else

10. if node � is not in PIF mode then
11. begin
12. Enter PIF mode;
13. Parent � Sender of � PIF � msg;
14. Decrease # of � PIF � waiting;
15. Send � PIF � msg to all output channels;
16. end
17. else
18. if � FEEDBACK � msg and is the parent then
19. begin
20. Group local states;
21. Decrease # of � PIF � waiting;
22. end;
23. if there is no more � PIF � msgs to receive then
24. begin
25. Build � PIF � msg will local states;
26. Send � FEEDBACK � msg to its parent;
27. end;
28. if node receives � DEATH NOTIFICATION � msg then
29. if receiving node is in PIF mode then
30. if sender is the parent then
31. Abort PIF in this snapshot
32. else Treat � DEATH NOTIFICATION � as a � PIF � ;

Figure 4. Adapted PIF for WSNs.

4. Simulation

The algorithms presented above were simulated, and the
metrics used to evaluate them were energy spent, number of
exchanged messages and execution time.

4.1. Network simulated

In the simulation we consider that the network is “flat”,
i.e., there are no clusters or hierarchy. In this way it is pos-
sible to evaluate better the effect of the algorithms on the
nodes since all elements in the network take part of the com-
putation in the same way. In hierarchical networks, on the
other hand, the cluster leader has a more important role. The
sink, the special node where all information captured by the
sensors is sent to, is fixed and has more computational re-
sources. It is a very common situation since the energy map

tends to be built “outside” of the network. The topology
is dynamic, and thus, some nodes can become unavailable
(“can die”), what it is also typical in a WSN. The channels
are FIFO and reliable (no messages are lost). Furthermore,
if a pair of nodes does not have a channel connecting them,
it means that one node cannot send or receive messages di-
rectly from the other.

We used three topologies to evaluate the algorithms.
Each one represents a grid of �
	��
�
	 nodes, equally dis-
tributed over a geographic region. In the first topology, the
sink is connected to only one node at position ����	����
	�� . In
this case, all information that passes from the network to the
sink or from the sink to the network must pass through this
node. If this node dies, the network will be inaccessible by
the sink and will become useless. In the second topology,
the sink node is connected to � nodes, all of them belong-
ing to side of the grid. Here, many nodes can exchange
information with the sink and forward messages to the net-
work. The information coming from the network can reach
the sink through different paths and the network will not
be inaccessible unless all of them die. The third topology is
similar to the first one, excepted that the sink is connected to
the node at the center of the grid located at position ������������� .

We adopt an energy model based on that proposed by [2].
According to it and making some simplifications we have
that the energy spent by transmission = �������� !�#" , and
energy spent by reception = �$ %�&" , where " is the message
length in bits, �'�)(*��+ , , an �� -(.��/
	 nJ/bit.

4.2. The simulator

The simulator used in this work is the DAJ simula-
tor [3] that provides a platform to develop distributed al-
gorithms. The execution model consists of a network of
nodes, that can be connected by channels and that oper-
ate asynchronously and independently of each other. The
communication mechanism is based on point-to-point mes-
sage exchange among connected nodes. The simulator ver-
sion available does not have libraries for simulating network
protocols, which must be developed by the programmer if
needed.

4.3. The simulation environment

The simulations were run in a Sun Enterprise 450 server
with 2 processors UltraSPARC-II de 250-MHz, 1024 MB
of RAM memory, Solaris Operation System version 9, and
Java 2 Runtime Environment, Standard Edition 1.4.

The execution time for algorithms DSA WSN and
Broadcast WSN was about 9 hours using the Topology 1,
about 41 hours using the Topology 2, and about 11 hours
using the topology 3. The execution time for algorithms
DSA WSN and PIF WSN was about 30 minutes using the

Topologies 1 and 2, and about 20 minutes using the Topol-
ogy 3.

5. Results

In our simulations we have measured the energy spent,
the execution time and the number of messages exchanged
considering the DSA algorithm to take the local snapshots,
and the broadcast and PIF algorithms to collect all snap-
shots. We have measured these in the three topologies de-
scribed earlier.

In this work we are not considering the computation of
any specific application. Thus, it is expected that the energy
spent will be directly related to the number of messages ex-
changed among the sensor nodes. The number of messages
sent by each node is constant in all simulated algorithms.
The messages that are determinant to the format of the en-
ergy map are the messages received by the nodes.

In the case of using the broadcast algorithm to collect
the local states, the number of messages sent by the algo-
rithms (DSA and broadcast) was constant and equal to 902
for all nodes in the three mentioned topologies, consider-
ing a network with 900 nodes. In the DSA algorithm step,
each node needs to send only a message, at the instant of
propagating the marker message to their neighbors. In the
broadcast step, each node sends 901 messages to propagate
the local snapshots, that corresponds to the snapshots of the
900 nodes in the network plus the sink message, that partic-
ipates in the broadcast.

The most favorable topology in the case of broadcast was
Topology 1. In this case the energy consumption of the net-
work was between 35 mJ and 45 mJ. The nodes have re-
ceived between 1800 and 2700 messages. In the Topology
3, almost all network spent about 45 mJ. Almost all nodes
received about 2800 messages. Topology 2 was the most en-
ergy consumer, where most nodes spent about 55 mJ. The
number of messages received by most of the nodes were al-
most 3600 messages, which it is 1800 messages more than
the number of messages received by the most expensive
nodes on the other topologies. This is because the sink node
is more connected than in the other topologies.

Figure 6 presents the energy consumption and the mes-
sages received, for the three topologies, using now PIF as
the algorithm for collecting local states. In this case, the
number of messages sent was constant and equal to 3 for
any node on the three topologies, notwithstanding the net-
work size. As we have shown, on the DSA step each node
needs to send only a message. On the PIF step, each node
needs to send two messages, one to its neighbors with the
message to initialize the PIF algorithm and another to its
parent with its own snapshot plus the its children’s snap-
shots.

The maps shown in the first column of Figure 6 repre-
sent the energy consumed (mJ) at each node in the network
after the first snapshot considering both the DSA and PIF
algorithms. The maps in the second column represent the
number of messages received at each node in the network.
The maps of both energy consumption and received mes-
sages are very similar, as expected. As mentioned before,
in our simulation we are not considering any specific appli-
cation. Consequently, the energy spent depends basically
on the number of messages exchanged among the nodes. In
this case, the map format is mainly related to the format of
the spanning tree.

In the case of PIF, the distribution of the energy spent
was likewise the spanning tree built. The nodes near the
spanning tree root (near the sink) spent more energy and
the leaves (the nodes more distant from the sink) spent less
energy. The most favorable topology in the case of PIF
was Topology 1, where most nodes spent between 0.12 and
0.14 mJ, increasing in the sink direction. The messages tend
to become larger as they get closer to the sink because there
is no data compression or fusion, only grouping. Looking
to the map of messages received, we can observe that the
number of messages also increases in that direction. It can
be justified by the format of the spanning tree generated by
the PIF algorithm. Moreover, when a node sends a message
to its parent, all nodes reached by this node also receive
the message. In spite of ignoring messages that are not ad-
dressed to them, these nodes still spend energy by hearing
these messages. This is a point that can be improved.

The average number of messages received in the case
of PIF was between 5 and 10 messages. In the PIF case,
the boundary still presents fewer messages received and low
energy spent. It can be once again justified by the lower
connectivity among these nodes and the network and the
format of the spanning tree.

In all topologies, most nodes spent about 0.12 mJ. In
Topology 3 there was a higher fluctuation in energy spent
among the nodes. In this topology the nodes directed to the
sink spent much more energy than in the other topologies.

We can observe that in the simulations where the PIF al-
gorithm was used to collect the local states, the energy con-
sumption was on average three magnitudes less than when
the broadcast algorithm was used. Messages in the PIF al-
gorithm tend to be longer than that in the broadcast algo-
rithm. Despite this, the PIF algorithm yet outperformed the
broadcast algorithm in terms of energy spent, that reflects
the number of messages exchanged in these two algorithms.
In the case of PIF, the number of messages exchanged by
most nodes was less ten messages, and in the case of broad-
cast was between 2700 and 2900 messages in the most fa-
vorable topology.

6. Conclusions

A WSN represents an important class of network that
can be used in a variety of situations. Traditional distributed
algorithms cannot be directly applied to these networks be-
cause of the distinguishing characteristics of WSNs. Thus,
it is necessary to design new versions of these algorithms.
This work presented how the DSA algorithm can be adapted
for WSNs. Furthermore, we have shown how this algorithm
can be used to obtain a very important information in WSNs
that is the energy map. From this map, we can have a bet-
ter idea of the remaining energy available in the network.
We can define, for example, where the sink must be placed
and which algorithm for obtaining the local state must be
used to decrease the number of messages exchanged in the
network, increasing its life time.

The DSA algorithm, together with PIF, is a very effi-
ciency solution in terms of messages exchanged, energy
spent and execution time when compared to the broadcast
algorithm. Yet, many improvements can be introduced in
respect to the use of these algorithms. When, in the PIF,
the children nodes send messages to their parents, all nodes
reached by them, receive these messages, wasting energy.
The nodes can, for example, turn off their radios when re-
ceiving messages not addressed to them.

Another improvement to the PIF algorithm, would be a
parent node wait for the feedback from a fraction of its chil-
dren or for a period of time. The latter could solve the prob-
lem of unavailable nodes. We are currently working in these
propositions.

References

[1] K. M. Chandy and L. Lamport. Distributed snapshots: De-
termining global states of distributed systems. ACM Transac-
tions on Computer Systems, 3(1):63–75, February 1985.

[2] A. P. Manish Bhardwaj, Timothy Garnett. Upper bounds
on the lifetime of sensor networks. Technical report, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139,
March 2001.

[3] W. Schreiner. A java toolkit for teaching distributed algo-
rithms. In Proc. of the 7th ACM Annual Conf. on Innova-
tion and Technologoy in Computer Science Education, 2002.
http://www.risc.uni-linz.ac.at/people/schreine/.

[4] A. Segall. Distributed network protocols. IEEE Transactions
on Information Theory, 29:23–35, 1983.

Energy map using PIF - Topology 1

0
5

10
15

20
25

30
X Axis

 0
5

10
15

20
25

30

Y Axis

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Energy spent
 in one Snapshot (mJ)

of messages received using PIF - Topology 1

0
5

10
15

20
25

30
Coordenada X

 dos nodos na rede 0
5

10
15

20
25

30

Coordenada Y
 dos nodos na rede

5

6

7

8

9

10

of messages
 received per node

Energy map using PIF - Topology 2

0
5

10
15

20
25

30
X Axis

 0
5

10
15

20
25

30

Y Axis

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Energy spent
 in one Snapshot (mJ)

of messages received using PIF - Topology 2

0
5

10
15

20
25

30
X Axis

 0
5

10
15

20
25

30

Y Axis

4

5

6

7

8

9

10

of messages
 received per node

Energy map using PIF - Topology 3

0
5

10
15

20
25

30
X Axis

 0
5

10
15

20
25

30

Y Axis

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Energy spent
 in one Snapshot (mJ)

of messages received using PIF - Topology 3

0
5

10
15

20
25

30
X Axis

 0
5

10
15

20
25

30

Y Axis

5

6

7

8

9

10

11

12

13

14

of messages
 received per node

Figure 5. Energy consumption and messages received using PIF

