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Abstract

The key challenge in the design of a wireless sensor network is maximizing its lifetime. This is a fundamental problem and new protocol

engineering principles need to be established in order to achieve this goal. The information about the amount of available energy in each part

of the network is called the energy map and can be useful to increase the lifetime of the network. In this paper, we propose using the energy

map as a protocol engineering principle for this kind of network. We argue that an energy map can be the basis for the entire design trajectory

including all functionalities to be included in a wireless sensor network. Furthermore, we show how to construct an energy map using both

probabilistic and statistical prediction-based approaches. Simulation results compare the performance of these approaches with a naive one in

which no prediction is used. The experiments performed use an energy dissipation model that we have proposed to simulate the behavior of a

sensor node in terms of energy consumption. The results show that prediction-based approaches outperform the naive in a variety of

parameters.

q 2004 Published by Elsevier B.V.
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1. Introduction

Wireless sensor networks (WSNs) are composed of low-

cost sensor nodes that can communicate with each other in a

wireless manner, have limited computing capability and

memory and operate with limited battery power. These

sensors can produce a measurable response to changes in

physical conditions, such as temperature or magnetic field.

The main goal of such networks is to perform distributed

sensing tasks, particularly for applications like environ-

mental monitoring, smart spaces and medical systems.

These networks form a new kind of ad hoc network with a

new set of characteristics and challenges.

Unlike conventional wireless ad hoc networks, a wireless

sensor network potentially comprises hundreds to thousands

of nodes [27]. The sensors often operate in noisy

environments and, in order to achieve good sensing

resolution, higher densities are required. Therefore, in a

sensor network, scalability is a crucial factor. Different from

nodes of a traditional ad hoc network, sensor nodes are

generally stationary after deployment. Although the nodes

are static, these networks still have dynamic network

topology. During periods of low activity, the network may

enter a dormant state in which many nodes go to sleep to

conserve energy. Also, nodes go out of service when the

energy of the battery runs out or when a destructive event

takes place [20]. Another characteristic of these networks is

that sensors have limited resources, such as limited

computing capability, memory and energy supplies, and

they must balance these restricted resources in order to

increase the lifetime of the network. In addition, the sensors

will be battery powered and it is often very difficult to

change or recharge batteries for these nodes. Therefore, in

sensor networks, we are interested in prolonging the lifetime

of the network and thus the energy conservation is one of

the most important aspects to be considered in the design of

these networks.
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1.1. The energy map

The information about the remaining available energy in

each part of the network is called the energy map and could

aid in prolonging the lifetime of the network. We could

represent the energy map of a sensor network as a gray level

image, in which light shaded areas represent regions with

more remaining energy, and regions short of energy are

represented by dark shaded areas. Using the energy map, a

user may be able to determine if any part of the network is

about to suffer system failures in near future due to depleted

energy [32]. The knowledge of low-energy areas can aid in

incremental deployment of sensors because additional

sensors can be placed selectively on those regions short of

resources. The choice of the best location for the monitoring

node can be made also based on the energy map. A monitoring

node is a special node responsible for collecting information

from the sensor nodes. Typically this node is named observer

or end user and it is interested in obtaining information from

the sensor nodes about the observed phenomenon. We know

that nodes near the monitoring node probably will spend more

energy because they are used more frequently to relay packets

to the monitoring node. Therefore, if we move the monitoring

node to areas with more remaining energy, we could prolong

the lifetime of the network.

Other possible applications of the energy map are

reconfiguration algorithms, query processing, data fusion,

etc. In fact, it is difficult to think of an application and/or an

algorithm that does not need to use an energy map.

Therefore, the energy map is an important information for

sensor networks. However, the naive approach, in which

each node sends periodically only its available energy to the

monitoring node, would spend so much energy due to

communications that probably the utility of the energy

information will not compensate the amount of energy spent

in this process. For that reason, better energy-efficient

techniques have to be devised to gather the information

about the available energy in each part of a sensor network.

1.2. Protocol engineering for wireless sensor networks

In the protocol area, the term protocol engineering was

coined to denote the protocol development cycle [15,21].

This area includes disciplines such as formal methods,

software and knowledge-based engineering principles and

basically follows the traditional software life cycle. Protocol

engineering has been a very active research area during the

last two decades where the fundamentals for traditional

computer networks were defined and protocol design

became a more systematic activity [9,10,13]. However,

with the advent of WSN, new protocol engineering

principles need to be established.

The key challenge in the design of a WSN is maximizing

its lifetime. From the point of view of protocol design,

a protocol architecture for these networks should consider a

power management plane as depicted in Fig. 1. Protocols for

WSNs must be energy-efficient in order to make better use

of the limited energy supply of the sensor nodes.

Most of the protocols proposed for WSNs, which take

into account the available energy in a sensor node, use the

information available locally when performing a given task.

For instance, some protocols [11,29,30] try to reduce the

energy consumption in order to be suitable for this new kind

of network. Other protocols [7,14,31] use the amount of

available energy in the node when they make a decision. In

many cases, to look at just the amount of the available

energy in a node may either be sufficient or lead to an

acceptable solution. Even in these cases, it would be

interesting to evaluate whether an energy map could provide

a better solution.

There are fundamental problems in WNSs, such as

routing, that can benefit from having the energy map of the

entire network. A routing algorithm can make a better use of

the energy reserves if it selectively chooses routes that use

nodes with more remaining energy, so that parts of

the network with small reserves can be preserved or

avoided. The protocol can also form a virtual backbone

connecting high energy islands of nodes.

The protocol proposed in Ref. [17] is an example of a

routing protocol that could take advantage of the energy map.

In that work, it is described the Trajectory Based Forwarding

protocol that is a new forwarding algorithm suitable for

routing packets along a predefined curve. The idea is to

embed the trajectory in each packet and let the intermediate

nodes take the forwarding decisions based on their distances

from the desired trajectory. If this protocol had the

information about the energy map, the trajectory could be

planned in order to pass through regions with more remaining

energy, thus preserving or avoiding regions of the network

with small reserves. Again, the goal here is to make better use

the energy reserves to increase the lifetime of the network.

In this work, we propose using the energy map of a WSN

as a new protocol engineering principle when designing new

protocols for this kind of network. If this is the case, the

design of a new protocol for a WSN can specify, given a

particular scenario in the network, the best action to be taken

to improve its energy efficiency. Therefore, an energy map

Fig. 1. Protocol architecture for a wireless sensor network with a power

management plane.
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can be the basis for the entire design trajectory including all

functionalities to be included in the WSN. The effectiveness

of having an application running in a wireless sensor

network will depend on the success in obtaining an energy

map. Note that the applicability of this map is not restricted

to a particular aspect of the application, but to all activities

present in the network since all of them need energy to be

carried out.

In this paper, we focus on proposing mechanisms to

predict the energy consumption of a sensor node in order to

construct the energy map of a wireless sensor network.

There are situations in which the node can predict its energy

consumption based on its own past history. If a sensor can

predict efficiently the amount of energy it will dissipate in

the future, it will not be necessary to transmit frequently its

available energy. This node can just send one message with

its available energy and the parameters of the model that

describes its energy dissipation. With this information, the

monitoring node can update its local information about the

available energy of this node. Clearly the effectiveness of

this solution depends on the accuracy with which prediction

models can be generated. We analyze the performance of

probabilistic and statistical models, and compare them with

a naive approach in which no prediction is used. In order to

evaluate the approaches to construct the energy map, we

need to know how is the energy drop in a sensor node. Thus,

we also propose an energy dissipation model that is used to

simulate the behavior of a sensor node in terms of energy

consumption. Simulation results show that the use of

prediction-based models decreases the amount of energy

necessary to construct the energy map of WSN.

1.3. Organization of the paper

The rest of this paper is organized in the following way.

Section 2 describes the model that we propose to describe

the behavior of a sensor node and, thus, to simulate its

energy drop. In Section 3, we describe two approaches to

construct a prediction-based energy map for a WSN. We

evaluate the performance of our approaches in Section 4. In

Section 5, we briefly survey the related work and compare

with our proposal. Our concluding remarks and directions

for our future work are presented in Section 6.

2. Energy dissipation model

In order to build an energy map, we have to know how is

the energy dissipation in the sensor nodes. To this end, we

use an energy dissipation model that tries to describe the

energy drop at each sensor node. To our knowledge, there is

only the work by Zhao, Govindan, and Estrin [32] that has

addressed this problem. In that work, two energy dissipation

models are proposed. The first one is the uniform dissipation

model. During a sensing event, each node n in the network

has a probability p of initiating a local sensing activity, and

every node within a circle of radius r centered at node n

consumes a fixed amount of energy e: The other one is the

hotspot dissipation model, where there are h fixed hotspots

uniformly distributed randomly on the sensor field. Each

node n has a probability p ¼ f ðdÞ to initiate a local sensing

activity, and every node within a circle of radius r centered

at node n consumes a fixed amount of energy e; where f is a

density function and d ¼ min;i{ln 2 hil} is the distance

from node n to the nearest hotspot. The main drawback of

these models is that they do not take into account the fact

that a lack of energy in these networks will influence their

behaviors. For example, to conserve energy, some sensors

have to sleep during some part of the time. Other problems

include the assumption that all nodes working in a sensing

event will consume the same amount of energy and that all

events have the same radius of influence. In this work, we

propose a model that tries to represent more realistically the

behavior of a sensor node in terms of its energy dissipation.

In the following we describe our energy dissipation model.

The conservation of energy is the paramount issue to be

considered in the design of sensor networks. The best way to

save energy is to make unused components inactive

whenever possible. This can be achieved in a framework in

which nodes have different modes of operation with different

levels of activation and, thus, different levels of energy

consumption and, as soon as possible, they go to a mode that

consumes less energy. In sensor networks, the nodes will

have to change between different states of activation. Using

this idea, we propose a model to describe the behavior of a

sensor node and evaluate and simulate its energy dissipation.

In this model, each node has four modes of operation: state 1,

sensing off and radio off; state 2, sensing on and radio off;

state 3, sensing on and radio receiving; state 4, sensing on

and radio transmitting. These modes represent the simplicity

of the hardware found in sensor nodes.

In this model, the following parameters are used: l;

arrival rate of the events; sleep-time, time the node will

sleep; sleep-prob, when a node is not acting in a sensing

event it will be in state 1 with probability sleep-prob, and in

state 2 with probability (1—sleep-prob); event-radius-min

and event-radius-max, the radius of each event will be a

random variable uniformly distributed between event-

radius-min and event-radius-max; event-duration-min and

event-duration-max, the duration of each event will be a

random variable uniformly distributed between event-

duration-min and event-duration-max; statei-prob,

probability of being in state i during an event; dist-line,

distance of influence when an information is relayed to the

monitoring node.

The behavior of the sensor node can be described by the

diagram depicted in Fig. 2. At the beginning of the

simulation, each node goes to state 1 with probability

sleep-prob or to state 2 with (1—sleep-prob).

When a node goes to state 1, it will be sleeping for sleep-

time seconds. During this period, this node will be saving

energy but it will not be able to communicate or to sense any
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event. After sleep-time seconds, the node wakes up and goes

to state 3 to check whether there is any event for it or there is

any node trying to communicate with it. If there is an event,

the node will go to states 1, 2, 3 or 4, with probabilities

state1-prob, state2-prob, state3-prob and state4-prob,

respectively. If there is no event, the node will go to

state 1 with probability sleep-prob and to state 2 with

(1—sleep-prob).

If a node goes to state 2, it will be in this state for sleep-

time seconds, but unlike in state 1, a node that is in state 2

can check the occurrence of an event since the sensing is on.

If an event occurs during sleep-time seconds, the node will

go to states 1, 2, 3 or 4, with probabilities state1-prob,

state2-prob, state3-prob and state4-prob, respectively.

After passing sleep-time seconds and no event happens,

the node goes to state 3 to check whether there is a

node trying to communicate with it and, again, it will go

to state 1 with probability sleep-prob and to state 2 with

(1—sleep-prob).

In this model, the events are simulated by a Poisson

process with parameter l: Therefore, the number of events

at each second of simulation is described by the random

variable:

PðX ¼ xÞ ¼
lxe2l

x!
: ð1Þ

When an event occurs, a position (X, Y) is randomly chosen

for it. The radius of influence of each event is a random

variable uniformly distributed between event-radius-min

and event-radius-max and all nodes within the circle of

influence of an event will be affected by it. This means that

when these nodes realize that there is an event for them (the

nodes have to be in states 2, 3 or 4), they will go to states 1,

2, 3 or 4, with probabilities state1-prob, state2-prob, state3-

prob and state4-prob, respectively. The duration of each

event is uniformly chosen between event-duration-min and

event-duration-max seconds. After that time, the data has to

be propagated to the monitoring node. We simulate this

behavior making all nodes distant dist-line from the straight

line between the point (X, Y) and the monitoring node go, for

a short time, to state 3 and, after that, to state 4.

The state transition just described tries to capture the

behavior of a sensor node, specially in terms of energy

consumption.

3. Prediction-based energy map

As described earlier, the knowledge of the available

energy reserves at each part of the network is an important

information for sensor networks. A natural way of thinking

about the energy map construction is one in which

periodically each node sends to the monitoring node its

available energy. We call this the naive approach. As the

sensor networks may have lots of nodes with limited

resources, the amount of energy spent in the naive approach

will be prohibitive. For that reason, better energy-efficient

techniques have to be designed to gather the information

about the available energy at each part of a sensor network.

In this section, we discuss the possibilities of construct-

ing the energy map using prediction-based approaches.

Basically, each node sends to the monitoring node the

parameters of the model that describes its energy drop and

the monitoring node uses this information to update locally

the information about the available energy at each node. The

motivation that guided us to this strategy is that if a node is

able to predict the amount of energy it will spend, it can send

this information to the monitoring node and no more energy

information will be sent during the period that the model can

describe satisfactorily the energy dissipation. Then, if a

node can efficiently predict the amount of energy it will

dissipate in the future time, we can save energy in the

process of constructing the energy map of a sensor network.

In order to predict the dissipated energy, we studied two

models. In Section 3.1, we describe a probabilistic model

based on Markov chains, and, in Section 3.2, we present a

statistical model in which the energy level is represented by

a time series and the Autoregressive Integrated Moving

Average (ARIMA) model is used to make the predictions.

3.1. Probabilistic model

In this section, we claim that each sensor node can be

modeled by a Markov chain In this case, the modes of

operation of a node are represented by the states of a

Markov chain and the random variables represent the

probability of staying at each state in a certain time. Then, if

Fig. 2. Diagram of the state transition model: 1, 2, 3, and 4 represent the

modes of operation of each node; ST and AT are synchronous and

asynchronous timers respectively.
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each sensor node has M modes of operation, each node will

be modeled by a Markov chain with M states.

Using this model, at each node, we have a sequence of

random variables X0;X1;X2;… that represents its states

during the time. Then, if Xn ¼ i; we say that the sensor node

is in mode of operation i at time-step1 n: In addition, given

that at each time the node is in state i; there is some fixed

probability, Pij; that the next state will be j: This probability

can be represented by: Pij ¼ P{Xmþ1 ¼ jlXm ¼ i}: We can

also define the n-step transition probability, PðnÞ
ij ; that a node

currently in state i will be in state j after n additional

transitions [25]:

PðnÞ
ij ¼

XM
k¼1

PðrÞ
ik Pðn2rÞ

kj ;

for any value of 0 , r , n:

With the knowledge of the probabilities PðnÞ
ij for all nodes

and the value of X0 (initial state of each node), it is possible

to use them to predict the energy drop of a sensor node. The

first step to make this prediction is to calculate for how

many time-steps a node will be in a state s in the next T

time-steps. If the node is in state iðX0 ¼ iÞ; the number of

time-steps a node will stay in the state s can be calculated

by:
PT

t¼1 PðtÞ
is : Also, if Es is the amount of energy dissipated

by a node that remains one time-step in state s; and the node

is currently in state i; then the expected amount of energy

spent in the next T times, ET ; is:

ET ¼
XM
s¼1

XT
t¼1

PðtÞ
is

 !
£ Es: ð2Þ

Using the value ET ; each node can calculate its energy

dissipation rate ðDEÞ for the next T time-steps. Each node

then sends its available energy and its DE to the monitoring

node, which can estimate the dissipated energy at each node

by decreasing the value DE; periodically, from the amount

of remaining energy of each node. The better the estimation

the node can do, the fewer the number of messages

necessary to obtain the energy information and, thus, the

fewer the amount of energy spent in the process of getting

the energy map.

3.2. Statistical model

In this section, we present the statistical model used to

forecast the available energy in the sensor nodes. In this

model, we represent the energy drop of a sensor node as a

time series. A time series is a set of observations xt; each one

being recorded at a specific time t [3]. A discrete-time series

is one in which the set T0 of times at which observations are

made is a discrete set. Continuous-time series are obtained

when observations are recorded continuously over some

time interval. There are two main goals of time series

analysis [28]: identifying the nature of the phenomenon

represented by the sequence of observations, and forecast-

ing (predicting future values of the time series variable). In

this work, we are interested in using the time series analysis

to forecast future values of the available energy in a sensor

node. We will use the discrete-time series in such a way that

each node will verify its energy level in a discrete time

interval.

We can observe that the time series which represents the

energy drop of a sensor node has a clear decreasing trend.2

In this work, we suppose that there is no replacement in the

battery and no seasonality.3 The decreasing trend will also

imply in a decreasing mean and then the energy level will

also be a nonstationary time series.4

In this work, we will use the ARIMA model to predict

future values of the time series. The ARIMA model was

proposed by Box and Jenkins [2] and they consist of a

systematic methodology for identifying and estimating

models that could incorporate both autoregressive and

moving average approaches. This makes the ARIMA model

a powerful and general class of models [18]. The

‘integrated’ part of the model is because of the differencing

step necessary to make the series stationary.

The first step in developing an ARIMA model is to

determine if the series is stationary. When the original series

is not stationary, we need to difference it to achieve

stationarity. Given the series Zt; the differenced series is a

new series Xt ¼ Zt 2 Zt21: The differenced data contain one

less point than the original one. Although one can difference

the data more than once, a small number of differences is

usually sufficient to obtain a stationary time series [18]. The

number of differencing applied in the original series is

represented by the parameter d:

The next step in the construction of the ARIMA model is

to identify the AR terms. An autoregressive model is simply

a linear regression of the current value against one or more

prior values of the series. The value of p is called the order

of the AR model. Then, an autoregressive model of order p

can be summarized by: Xt ¼ f1Xt21 þ f2Xt22 þ … þ

fpXt2p þ Zt; where Xt is the time series, f1;f2;…;fp are

the autoregressive model parameters, and Zt represents

normally distributed random errors.

After defining the differencing and the autoregressive

parameters, we have to identify the MA terms. A moving

average model is essentially a linear regression of the

current value of the series against the random shocks of one

or more prior values of the series [18]. The random shocks at

each point are assumed to come from the same distribution,

typically a normal distribution, with constant location and

scale. The distinction in this model is that these random

1 A time-step is a small amount of time. We suppose that all state

transitions occur at the beginning of any time-step.

2 Trend refers to a gradual, long-term movement in the data.
3 Seasonality refers to periodic fluctuations that are generally related to

weather factors or to human-made factors such as holidays and vacations.
4 A stationary time series is one whose statistical properties, such as

mean, variance, and autocorrelation, are all constant over time.
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shocks are propagated to future values of the time series. A

moving average model of order q is represented by: Xt ¼

Zt þ u1Zt21 þ u2Zt22 þ · · · þ uqZt2q; where Xt is the time

series, u1; u2; · · ·; uq are the moving average model par-

ameters and the Zt are random shocks to the series.

In order to use the ARIMA model we have to identify the

values of p (order of the autoregressive model), d (number

of differencing required to achieve stationarity), q (order of

the moving average model) and the coefficients of the

autoregressive and moving average models. Thus, a time

series Tt can be represented by an ARIMA ðp; d; qÞ model if,

after differencing this series d times, we find a stationary

time series Xt; such that for every t: Xt ¼ f1Xt21 þ … þ

fpXt2p þ Zt þ u1Zt21 þ … þ uqZt2q:

When using equation above, we can predict the value of

the time series in time t using the previous values and some

random variables that represent the errors in the series. In

general, the estimation of these parameters is not a trivial

task. In Refs. [18,28], the authors describe some techniques

to help in the process of parameter identification.

4. Simulation results

In order to analyze the performance of the proposed

schemes, we implemented the prediction-based energy

maps in the ns-2 simulator [19]. The approaches

implemented were: the Markov, in which each node sends

periodically to the monitoring node its available energy and

its predicted energy consumption rate; and the ARIMA, in

which each node sends to the monitoring node its available

energy and the parameters of this model. These approaches

are compared with the naive one in which each node sends

periodically to the monitoring node only its available

energy.

In our simulations, we use the energy dissipation model,

presented in Section 2, to describe the behavior of sensor

nodes and, thus, to simulate their energy dissipation.

Therefore, each node has four modes of operation: state 1

(sensing off, radio off), state 2 (sensing on, radio off), state 3

(sensing on, radio receiving) and state 4 (sensing on, radio

transmitting). The values of power consumption for

each state were calculated based on information presented

in Ref. [8]: state 1: 25.5 mW, state 2: 38.72 mW, state 3:

52.2 mW and state 4: 74.7 mW. These values will be used

throughout all simulations.

In the Markov model, each node sends its available

energy and its energy dissipation rate to the monitoring

node. To obtain its energy dissipation rate, each node locally

calculates its own probabilities, PðnÞ
ij : In this case, Pij will be

the number of times the node was in state i and went to state

j divided by the total number of time-steps the node was in

state i: With these probabilities, each node uses Eq. (2) to

find its energy dissipation rate. If each node can predict

efficiently its energy dissipation rate, this approach can save

energy compared with the naive, because no more energy

information packet has to be sent while the energy

dissipation rate describes satisfactorily the energy drop in

this node.

In the implementation of the ARIMA model, we have to

identify the parameters p; d; q and to estimate the coeffi-

cients of the AR and MA models. The first step in fitting an

ARIMA model is the determination of the order of

differencing needed to stationarize the series (parameter

d). Normally, the correct number of differencing is the

lowest order of differencing that yields a time series which

fluctuates around a well-defined mean value and whose

autocorrelation function plot decays fairly rapidly to zero,

either from above or below [16]. If the series still exhibits a

long-term trend, i.e. a lack of tendency to return to its mean

value, or if its autocorrelations are positive out to a high

number of lags, it needs a higher order of differencing. In

general, the optimal order of differencing is often the one at

which the standard deviation is lowest [16]. In addition, if

the lag 1 autocorrelation is 20.5 or more negative, the series

may be over-differenced. In our simulation, we chose the

smallest value of d that produces the lowest standard

deviation in such a way that the lag 1 autocorrelation is not

more negative than 20.5. The number of AR and MA terms

was found using the autocorrelation and partial autocorrela-

tion functions. The lag at which the partial autocorrelation

function cuts off indicates the number of AR terms, and the

number of MA terms is determined by the lag at which

the autocorrelation function cuts off. The values of the

coefficients of the AR and MA models were calculated

based on a conditional sum-of-squares and maximum

likelihood (minimize CSSML) method implemented in

Ref. [23].

In all simulations we use the parameter threshold that

determines the accuracy required or the maximum error

acceptable in the energy map. If we define a threshold of

3%, a node will send another energy information to the

monitoring node only when the error between the energy

value predicted by the monitoring node and the correct

value is greater than 3%. Each node can locally determine

this error by just keeping the parameters of the last

prediction sent to the monitoring node. Then, adjusting

the value of the threshold, we can control the precision at

which the energy maps are constructed.

The numerical values chosen for the base case of our

simulations can be seen in Table 1. Unless specified

otherwise, these values are used as the parameters

throughout the remainder of this work. Moreover, in all

simulations, the monitoring node is positioned at the middle

of the field at position (50, 50), and all nodes are immobile

and can communicate with other nodes within their

communication range.

In order to analyze the performance of the approaches in

situations where it is necessary an energy map with very low

error (small threshold) and also when we can tolerate a

greater error (big threshold), we changed the value of the

parameter threshold. We ran the naive, Markov and ARIMA
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the average degree of each node is 22.7. Fig. 3a shows the

average number of energy information packets that each

node had to send to the monitoring node, during a

simulation of 1000 s, to construct an energy map with an

error no greater than the corresponding threshold. These

results correspond to an average of these values and a 95%

confidence interval. We can see that the Markov approach is

better than the other two for all values of threshold. But its

performance is very close to the ARIMA model, meaning

that both approaches have similar power of prediction for all

values of threshold. However, the graph of Fig. 3a is not a

fair way of comparing the three approaches because when a

node, running the naive algorithm, has to send an energy

information packet, the size of the extra information

required is only 4 bytes (its available energy). In the

Markov algorithm, the overhead is of 8 bytes (its available

energy and its current power consumption) and in the

ARIMA model the overhead is about 40 bytes (with the

parameters p; d; q and the coefficients of the AR and MA

models). In order to perform a fair comparison between the

three approaches, we have to analyze the average number of

bytes that each node has to send when running the naive,

Markov and ARIMA algorithms. Thus, the metric used to

define energy efficiency will be the number of bytes

transmitted. Fig. 3b compares the average number of

bytes that each node had to send to the monitoring node if

the normal packet size of a sensor network is 30 bytes. In

this situation, each time a node has to send its energy

information, it will have to send 34 bytes (30 bytes of

Table 1

Default values used in the simulations

Parameter Value

l 0.5

Sleep-time 10 s

Sleep-prob 0.7

Event-radius-min 10 m

Event-radius-max 30 m

Event-duration-min 10 s

Event-duration-max 50 s

Dist-line 20 m

State 1-prob 0.01

State 2-prob 0.2

State 3-prob 0.45

State 4-prob 0.34

Threshold 3%

Initial energy 100 J

Communication range 20 m

Time-steps 1 s

Fig. 3. Comparison between the three approaches when we change the value of the threshold.
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the normal packet plus 4 bytes of the naive overhead) in the

naive algorithm, 38 in the Markov and 70 bytes in the

ARIMA. We can see that when we compare the number of

bytes rather than the number of packets, the performance of

the ARIMA is closer to the naive, and the Markov is still the

best of the three. Fig. 3c and d show what happens when the

normal size of a packet is 60 and 120 bytes, respectively. As

the normal packet size increases, the naive becomes even

worse because, in these situations, the overhead of the large

amount of information required by the ARIMA has a

smaller impact in the total number of bytes sent. Thus, for all

values of threshold analyzed, the Markov model was more

energy-efficient than the other two models, and for sensor

networks whose size of the packet is small, the performance

of the ARIMA is very close to the naive approach.

Next we altered the value of the parameter l in order to

study the behavior of each approach when the number of

events increases. We executed the three approaches using

the same scenario described above, during a simulation of

1000 s. Fig. 4a shows the average number of packets when

we increase the number of events in the network. In these

simulations, the threshold was fixed in 3%. We can see that

the power of making prediction of the Markov model is very

similar to the ARIMA, but still better for all values of l:

Also, as the network becomes more active, the difference

between the number of packets required by the naive and by

the prediction-based approaches is getting larger. Never-

theless, as described above, to do a fair comparison, we have

to analyze the number of bytes transmitted by each

approach. These results are shown in Fig. 4b–d. We can

see that the Markov approach is still better than the other

two for all values of packet size, and also that when the

packet size increases, the difference between the number of

bytes transmitted by the prediction-based approaches and

the naive one increases. One interesting fact is that the

prediction approaches have a better behavior when the

number of events is very small or big. The worst case of

these approaches happens for medium values of l: This

means that the fact of having more events does not make the

problem of prediction more difficult. The more difficult

situations for the prediction approaches are when there is a

medium number of events. On the other hand, in the naive

approach, as more events happen, more energy will be spent

by a node and more often it will have to send energy

information packets to the monitoring node. Then, the

prediction approaches scale well when the number of events

increases or, the power of making prediction does not

decrease when the activity of the network increases.

Due to the nondeterministic characteristic of the sensor

networks, it is better to perform predictions that are simple

Fig. 4. Comparison between the three approaches when we change the value of the parameter l:
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both in terms of the computation required to find the

parameters of the prediction model and, mainly, in terms of

the number of parameters that have to be sent to the

monitoring node. This feature becomes clear when we

compare the two prediction techniques. Even though both

present similar capacity of making prediction, the Markov

approach is better because, in this model, only one

parameter describes the energy dissipation in a sensor

node, and thus, only the available energy and the current

dissipation rate have to be sent to the monitoring node.

Thus, in the construction of prediction-based energy maps,

it is better to use simple models instead of sophisticated

predictions that demand a lot of communication between the

sensors and the monitoring node.

5. Related work

5.1. Prediction techniques

The use of prediction techniques is very common in

many research areas such as meteorology [4], stock market

[5] and biology [6]. In computer networks, prediction

algorithms have been used to predict network traffic [26].

The ability to predict traffic patterns within a network is one

of the fundamental requirements of network management.

Wireless sensor nodes tend to have very restrict hardware

resources. Thus, a prediction algorithm for these networks

is required to be simple. This simplicity implies that the

processing time in estimating the future energy consump-

tion rate and the number of parameters that have to be sent

to the monitoring node cannot pose a heavy burden on the

sensor node. Another characteristic that we pursue when

choosing a prediction algorithm, is that all computation is

done locally. Each node should make its own prediction

based only on its past behavior and no communication

between neighboring nodes is required.

Our goal when choosing the Markov chain is to have a

very simple prediction algorithm based on states, like the

energy dissipation model presented in this work. The main

idea is that the transitions between states will happen in the

future in the same way they happened in the past. As

example, if in 30% of the time when a node was in

operation mode 1, it went to operation mode 2, it means

that when this node will be in state 1, it will go to state 2

with probability 0.3. This prediction technique has two

main advantages to WSN:

† The computation of the prediction is simple and it is done

locally, since each node computes its power consumption

only keeping track of its past state transitions.

† It is suitable for WSNs since, in these networks, the

node has to turn off the parts that are not been used to

save energy. Thus, nodes can be modeled by states of

operation.

We chose the ARIMA model in order to have a more

sophisticated technique to be contrasted with the Markov

chain. Our goal was to compare a technique to make

predictions based on time series with the very simple one

based on states. The results showed that the ARIMA is not

suitable for WSN due to its complexity in terms of the

number of communications.

5.2. Wireless sensor networks

In Refs. [1,12,22,24] the authors explore issues related to

the design of sensors to be as energy-efficient as possible. In

particular, the WINS [1,22] and PicoRadio [24] projects are

seeking ways to integrate sensing, signal processing, and

radio elements onto a single integrated circuit. The

SmartDust project [12] aims to design millimeter-scale

sensing and communicating nodes.

The energy efficiency is the primary concern in designing

good media access control (MAC) protocols for aWSN.

Another important attribute is scalability with respect to

network size, node density and topology. A good MAC

protocol should easily accommodate such network changes

[29]. In addition, some energy-aware routing schemes have

been proposed for WSNs. Directed diffusion [11] is a new

paradigm for communication between sensor nodes. In this

paradigm, the data is named using attribute-value pairs and

data aggregation techniques are used to dynamically select

the best path for the packets. This enables diffusion to

achieve energy savings. Sensor Protocols for Information

via Negotiation (SPIN) [7,14] is a family of adaptive

protocols that efficiently disseminate information among

sensors in an energy-constrained WSN.

5.3. Energy map generation

The work proposed in Ref. [32] obtains the energy map

of sensor networks by using an aggregation based approach.

A sensor node only needs to report its local energy

information when there is a significant energy level drop

compared to the last time the node reported it. Energy

information of neighbor nodes with similar available energy

are aggregated in order to decrease the number of packets in

the network. In Ref. [32], each node sends to the monitoring

node only its available energy, whereas in our work each

node sends also the parameters of a model that tries to

predict the energy consumption in the near future. Thus, in

our approach, each node sends to the monitoring node its

available energy and also the parameters of the model

chosen to represent its energy drop. With these parameters,

the monitoring node can update locally its information

about the current available energy at each node, decreasing

the number of energy information packets in the network.
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6. Conclusion and future work

In this work, we have studied the problem of constructing

the energy map for WSNs. We analyzed two prediction-

based energy maps based on probabilistic and statistical

models. In the prediction-based energy maps, each node

tries to estimate the amount of energy it will spend in the

near future and it sends this information, along with its

available energy, to the monitoring node. Using the energy

dissipation model proposed in this paper, simulations were

conducted in order to compare the performance of the two

prediction-based approaches with a naive one, in which only

the available energy is sent to the monitoring node.

Simulation results indicate that the prediction-based

approaches are more energy-efficient than the naive

model, and also that these approaches are more scalable

with respect to the number of sensing events.

As discussed here, prediction-based techniques are a

good approach to construct the energy map for WSNs. We

intend to extend this work by examining and evaluating

other prediction models for obtaining the energy map.

In Ref. [9], Holzmann points out that protocol design is

still much of an art, but more and more we should strive for

applying and defining well-established principles and

practices. This paper discussed the importance of building

an energy map for a WSN since it can be applied to the

design of different aspects of this kind of network.

Furthermore, it presented how an energy map can be

obtained in an efficient way.
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